SDT

Sage
Debugging
Tool

Copyright (c) 1983, Sage Computer Technology, Reno, NV 89502

All rights reserved. Reproduction or use, without express
permission of editorial or pictorial content, in any manner,
is prohibited. No patent liability is assumed with respect
to the use of the information contained herein. While every
precaution has been taken in the preparation of this book,
Sage Computer Technology assumes no responsibility for
errors or omissions. Neither is any liability assumed for

damages resulting from the use of the information contained
herein.

SAGE™ is a trademark of SAGE Computer.
p-SYSTEM™ is a trademark of SofTech Microsystems.
CP/M-68K™ is a trademark of Digital Research.

SAGE COMPUTER
4905 Energy Way
Reno, Nv. 89502
(702) 322-6868

December 1983

TABLE OF CONTENTS

Table Of Contents

I INTRODUCTION e h e e e e |
I.01 WHEN TO USE ASSEMBLY [ANGUAGE 3
II SAGE MEMORY MAP ¢ ¢ ¢ ¢ s o« 0 ¢ o s = & 8
I11.01 RAM e e st et e e e e e e e e .. 8
I11.02 PROM & . o v c v ¢ o o o 2 s o o0 a s s s s 40 . 8
I1.03 I/O PORTS (general) . . « o« « o o o « 2 o o o = 9
11.04 I/0 PORTS (specific) . . ¢« ¢ ¢ v o v o v o o & 10
I1I1.05 RAM Memory Allocation . « ¢ « « ¢ ¢« o ¢ o » » . 14
III SAGE PROMS . . . ¢ ¢ ¢ o s o o s s o o oo o o s 15
III.01 PROM VERSIONS e e s e e e e e s e .. 16
III.02 PROM START-UP TESTS . ¢ ¢ o« ¢ o « ¢« ¢ o o o« « « 17
ITI.03 RAM MEMORY TEST . & & ¢ ¢ ¢ ¢ o o s o s o =+ & . 21

DISABLING THE MEMORY TEST 22
v DISK BOOTSTRAP . . . v &+ ¢ ¢ ¢« « s o s a ¢« o+« 23
1v.01 p-SYSTEM FLOPPY BOOT e e s s e 0. 24

FLOPPY FORMAT . . & v &+ 4 4 o o s o o &« . . 26
Iv.02 P-SYSTEM WINCHESTER BOOT e e e e e 26
1v.03 IOADING THE p-SYSTEM BIOS e e 0 27
v PROM ENTRY POINTS « . « s « . e e o+ 30
VI SAGE DEBUGGING TOOL . & « ¢ ¢« ¢ o o o o o & s 37
VI.O1 SDT PHIIOSOPHY . . v & ¢ o « « e s s s e e e 38
V1.02 SDT REGISTER USAGE . . . v ¢ ¢« ¢ ¢ ¢ 2 ¢ o » » .38
VI.03 SDT QUICK DESCRIPTION O 12
VI1.04 SDT DETAILED DESCRIPTION « + « - . .. 47

EXCEPTION FRRORS . & v = v ¢ o ¢ o o o o & 81
VII LINK INFORMATION FOR THE 68000 84

TABLE OF CONTENTS

VII.O1 WORKING IN ASSEMBLY IANGUAGE 84
VII.O02 EXAMPLES . ¢ ¢ v ¢ ¢ ¢ o ¢ o o s a s s s o o+ . 86
VII.O3 STACK AND REGISTER USAGE . . . ¢« ¢ ¢« v ¢« oo« 91
VIII 68000 EXAMPLLES . . ¢ o o o ¢ ¢ o ¢ ¢ o a s o » « 93
IX STAND-ALONE IOADER ¢ ¢ v s o o o+ .99

APPENDIX A: EXCEPTION FRRORS101
APPENDIX B: FLOPPY DISK BOOT ERRORS104
APPENDIX C: WINCHESTER DRIVE ERRORS 105
APPENDIX D: PROM ROUTINE ENTRY POINTS 106
APPENDIX E: DEBUGGER COMMANDS 107

INDEX . . . o ¢ o o s o o o s o 5 8 5 6 0606 060e0s0s000.114

ATTACHMENT: SOFTECH ASSEMBLER MANUAL
ATTACHMENT : SCHEMATICS

ii

INTRODUCTION

I INTRODUCTION :

The purpose of this manual is to provide programmers with
the information needed to rapidly develop and debug assembly
language programs. The content is aimed at seasoned
programmers and is not intended to be a tutorial. If you
haven't programmed in assembly language before, we recommend
the following reference material.

68000 ASSEMBLY LANGUAGE PROGRAMMING

By Gerry Kane, Doug Hawkings, and lLance Leventhal, published
by OSBORNE/McGraw-Hill. This is a good introductory text
for programmers who are unfamiliar with assembly language
programming.

THE 68000: PRINCIPLES AND PROGRAMMING

By leo J. Scanlon, a SAMS publication. This is essentially
a textbook for learning assembly language programming
techniques on the 68000. It includes good discussions on
the philosophy of the 68000, excellent programming examples,
and valuable reference material.

MC68000 16-BIT MICROPROCESSOR USER'S MANUAL

Available from Motorola Inc., this manual provides reference
material intended for use by computer designers, software
architects, and design engineers. It contains a complete
description of the 68000 command set, essential to anyone
who is going to program at the assembly level. Also
included are timing information, pin descriptions, and
hardware interfacing notes.

ASSEMBLER AND SDT MANUAL 1

INTRODUCTION

There are a number of reasons why advanced programmers use
assembly language in the development of their programs, even
though assembly language programming ordinarily requires
more time and effort than programming in a high-level
language such as Pascal, BASIC, or FORTRAN.

One reason is speed. Speed improvements of 10 to 100 times
can be achieved by translating time-critical sections of a
high-level program into assembly language. The easiest way
to do this is to use the "Native Code Generator" utility.
(See the Utility section in the PROGRAM DEVELOPMENT MANUAL
for more information on the "NOG".)

Another reason programmers use assembly language is to
access low-level portions of the computer's hardware.
Following this introduction is an example which illustrates
some ways to achieve speed and low-level access.

This manual contains information on the memory map of the
SAGE, examples on how to link assembly language routines to
high-level programs, and details of the operation of the
PROM routines. The Index and Table of Contents contain
references to all major topics. An appendix provides a list
of assembler errors and run-time errors.

2 ASSEMBLER AND SDT MANUAL

—

INTRODUCTION
WHEN TO USE ASSEMBLY LANGUAGE

I.01 WHEN TO USE ASSEMBLY LANGUAGE :

The decision to use assembly language in a program should
not be taken lightly. Although assembly language offers
speed, code efficiency, and low-level access, there are also
several disadvantages. Assembly code usually takes longer
to develop and debug than high-level code, and it is more
difficult to modify or expand at a later date. It is also
not portable between different machines (to an Apple or IBM
system, for instance). The p-code produced by the Pascal,
BASIC, and FORTRAN compilers will often run on an Apple or
IBM system with little modification. Assembly code produced
for the 68000 definitely will not.

The following example illustrates three different approaches
to a programming problem. We hope this will help the user
select the approach most suited to his or her particular
application.

"LED Test" is a simple program which flashes the SAGE LED
status light green and red 50 times. This task requires a
bit to be set and cleared in one of the SAGE IV's output
ports. Such an access to the low-level hardware normally
requires assembly code, but a special UNITWRITE statement
(see the TECHNICAI, MANUAL) allows us to access the SAGE I.ED
directly from a Pascal program. BASIC and FORTRAN lack this
capability, so we would be forced to link to an assembly
language routine or a Pascal unit if we were using either of
those languages.

The source text of three versions of "LED Test" follows this
text. "LED Test_1" is the original program written in
Pascal. "LED Test 2" has two additional compiler options
which allow the subsequent generation of native code
(machine code) from the p-code. This is achieved using the
"Native Code Generator" utility (see the PROGRAM DEVELOPMENT
MANUAL). "LED Test 3" is written primarily in assembly code
which is linked to a small Pascal program. The assembly
code was assembled using SYSTEM.ASSMBLER, the Pascal host
was compiled using SYSTEM.COMPILER, and then the two code
files were linked using SYSTEM.LINKER (this process is

ASSEMBLER AND SDT MANUAL 3

INTRODUCT ION
WHEN TO USE ASSEMBLY LANGUAGE

described in detail on page 87)

Here are the results of a timing test, along with the final
code size of each program.

Name Execution time Code size
(seconds) (words)
LED Test_1 (p-code) 43.7 108
LED Test 2 (native) 3.7 163
LED Test 3 (assembly) 0.6 78

As you can see from this example, translation to native code
using the "Native Code Generator" offers an attractive
compromise between pure p-code and pure assembly code.
Unfortunately, the dramatic increase in speed is accompanied
by a considerable increase in code size.

The example also shows that assembly language is very
desirable in environments where speed and efficiency are
essential. "LED Test 3" ran 6 times faster than the
translated native code version, and it took only half the
space. It also ran 72 times faster than the original Pascal
program. However, these benefits must be weighed against
the costs of increased program development time, more
difficult modification of the program in the future, and
loss of portability between different microprocessors.

4 ASSEMBLER AND SDT MANUAL

INTRODUCTION
WHEN TO USE ASSEMBLY ILANGUAGE

LED Test 1
PROGRAM LED_Test_1; { ***x P-code version *** }
CONST LEDLO = =16281; { Address of LED }
LEDHI = 255;

VAR I,J: INTEGER;
Red, Green: PACKED ARRAY[O..1] OF 0..255;

BEGIN

WRITELN('Start',CHR(7)); { Beep bell to start time test 2

Greenl[0J:=6; Red[01:=7; { Define values to turn LED green and red }

FOR I:=1 TO 50 DO { Flash LED 50 times }
BEGIN
UNITWRITE(130,6reenf03,1,LEDLO,LEDHI); { Turn LED green)}
FOR J:=1 TO 5000 DO; { Waste some time }
UNITWRITE(130,Redl0],1,LEDLO,LEDHI); { Turn LED red }
FOR J:=1 TO 5000 DO; { Waste some time }
END;

WRITELNC(CHR(7),"End"); { Beep bell to end time test }

END.

ASSEMBLER AND SDT MANUAL 5

INTRODUCTION
WHEN TO USE ASSEMBLY LANGUAGE

LED Test 2

6 ASSEMBLFR AND SDT MANUAL

INTRODUCTION
WHEN TO USE ASSEMBLY LANGUAGE

LED Test 3

ASSEMBLER AND SDT MANUAL ' 7

SAGE MEMORY MAP

IT SAGE MEMORY MAP :

These tables show the allocation of memory and I/O addresses
for the SAGE IV computer.

I1.01 RAM :
Addresses (hex) Contents

000000 - OOOOFF Interrupt & Exception Vectors

(see literature on 68000 processor)
000100 - OOO1FF Debugger (SDT) RAM area
000200 - OOO2FF BIOS RAM area
000300 - OOO3FF Debugger (SDT) system stack
000400 - 0103FF P-System data area (64K, 64K max.)
010400 - O133FF P-System Interpreter (12K)
013400 - 0233FF P-System code pool (64K, 64K max.)
023400 - BIOS RAM Disk

(Note: Bios is placed at top of equipped RAM memory. See
discussion at end of this section.)

I1.02 PROM :

FEOOOO - FE3FFF Current PROMS (16K) include startup tests
and simple diagnostic tools; the Sage
Dehugging Tool, disassembler, and low-
level I/O routines. See page 15
for further information on PROMS.

FE4000 —~ FEFFFF Reserved for future PROM expansion.

8 ASSEMBLFR AND SDT MANUAL

SAGE MEMORY MAP
I/0 PORTS (general)

1I1.03 I/0 PORTS (general) :

SAGE has defined a major Input/Output partition for each of
up to 16 boards. FEach partition is divided into 16 device
areas of 64 bytes.

Most peripherals are accessed using bytes instead of words,
so they are addressed using the low byte of each word (the
odd addresses).

FFCOO0 - FFC3FF Board #1 (Main CPU 1/0)

FFC400 - FFC7FF Board #2 (Hard Disk and additional serial
ports)

FFC800 - FFCBFF Board #3 (Reserved for SAGE expansion)

FFCCOO - FFCFFF Board #4 (won

FFDOOO - FFD3FF Board #5 (

FFD400 - FFD7FF Board #6 (

FFD800 - FFDBFF Board #7 (

FFDCOO - FFDFFF Board #8 (

FFEOOO - FFE3FF Board #9 ("

FFE400 - FFE7TFF Board #10 (

FFE800 - FFEBFF Board #11 (

FFECOO - FFEFFF Board #12 (

FFFOO0 - FFF3FF Board #13 (

FFF400 - FFF7FF Board #14 (

FFF800 ~ FFFBFF Board #15 ("o

FFFCOO - FFFFFF Board #16 ("n

Reserved for User

Nt Nt N N N N N N N Nt N N N

ASSEMBLER AND SDT MANUAL 9

SAGE MEMORY MAP
I/0 PORTS (specific)

I1.04 I/0 PORTS (specific) :

Except for the SAGE LED status light, all I/O ports can be
configured and accessed using calls to the SAGE BIOS. We do
not recommend that you access these ports directly due to
possible conflicts with the BIOS.

Note: The 68000 must be in supervisor mode to access these
addresses. Access will be denied and a bus error will
result if the 68000 is in user mode.

Board #1 (Main CPU I/0)

FFCOO1 REAL TIME CLOCK (A)
FFC003 SERIAL PORT 1 BAUD RATE (B)
FFC005 SERIAL PORT 2 BAUD RATE ©)
FFCO07 MODE WORD FOR A,B AND C ABOVE (8253-S)
FFCO09 — FFCOOF RESFRVED

FFCO11 - FFCOIF IEEE-488 INTERFACE (TMS9914)
FFRCO21 GROUP-A DIP SWITCH (A)
FFC023 GROUP-B DIP SWITCH (B)
FFC025 FLOPPY CONTROL PORT (C)
FFC027 CONTROL FOR A,B, AND C ABOVE (8255A-S)
FFC029 - FFCO2F RESERVED

FFCO31 SERIAL PORT 2 (REMOTE) DATA (8251A)
FFCO33 SERIAL PORT 2 CONTROL/STATUS

FFCO35 — FFCO3F RESERVED

FFCO41 - FFCO44 INTERRUPT ENCODER CONTROL (8259)
FFCO45 - FFCO4F RESERVED

FFCO51 FLOPPY DISK STATUS (NEC 765)
FFC053 FLOPPY DISK CONTROL

FFCO55 - FFCOSF RESERVED

FFCO61 PRINTER INTERFACE PORT A

FFCO63 PRINTER INTERFACE PORT B

10 ASSEMBLER AND SDT MANUAL

FFC065

FFC0867
FFC069

FFCO71
FFCO73
FFCO75

FFCO81
FFC089

FFCO6F

FFCO7F

FFCO87
FFCO8F

SAGE MEMORY MAP
I1/0 PORTS (specific)

PRINTER INTERFACE PORT C

(LED status light is controlled

by bit 3. l=red, O=green)
PRINTER INTERFACE CONTROL (8255A-8)
RESERVED

SERIAL PORT 1 (TERMINAL) DATA (8251A)
SERIAL PORT 1 OONTROL/STATUS
RESERVED

REAL. TIME CLOCK (8253-S)
RESERVED

ASSEMBLER AND SDT MANUAL, 11

SAGE MEMORY MAP
I1/0 PORTS (specific)

Board #2 (Hard disk and additional serial ports)

Auxiliary Serial Channel Ports:

FFC401
FFC403
FFC405
FFC407

FFC409

FFC441
FFC443
FFC445
FFC447

FFC449
FFC481
FFC483
FFC485
FFC487
FFC489
FFC4C1
FFC4C3
FFCACS
FFCAC7

FFCAC9

12

FFC43F

FFCATF

FFC4BF

FFC4FF

AUX 4 SERIAL CHANNEL DATA (2651)
AUX 4 SFERIAL CHANNEL STATUS

AUX 4 SERIAL CHANNEL MODE REGISTER
AUX 4 SFRIAL CHANNEL COMMAND REGISTER

RESERVED
AUX 3 SERIAL CHANNEL DATA (2651)
" " n " STAT[]S
mowmoo " MODE REGISTER
mowoom " COMMAND REGISTER
RESERVED
AUX 2 SERIAL CHANNEL DATA (2651)
" " 1" " STAT'(B
moww " MODE REGISTER
momo " COMMAND REGISTER
RESERVED
AUX 1 SERIAL CHANNEL DATA (2651)
” " " " STAT[B
nowoow " MODE REGISTER
meowoow " COMMAND REGISTER
RESERVED

ASSEMBLER AND SDT MANUAL

P

SAGE MEMORY MAP
I/0 PORTS (specific)

Winchester drive ports:

FFC501 MISC. CONTROL, PORT A (8255)
FFC503 MISC. CONTROL, PORT B

FFC505 MISC. CONTROL, PORT C

FRC507 MISC. CONTROL, CONTROL REGISTER
FFC509 — FFC53F RESERVED

FFC541 STATUS REGISTER (8259)
FFC543 COMMAND REGISTER

FFC545 - FFCS57F RESERVED

FFC581 MAIN DRIVE CONTROL, PORT A (8255)
FFC583 MAIN DRIVE CONTROL, PORT B

FFC585 MAIN DRIVE CONTROL, PORT C

FFC587 MAIN DRIVE CONTROL, CONTROL REGISTER
FFC589 — FFCSBF RESERVED

FFC5C1 D/A CONVERTER DATA STROBE

FFC5C3 - FFCS5FF RESFRVED

FFC601 COUNTER #0 (8253)
FFC603 COUNTER #1

FFC605 COUNTER #2

FFC607 MODE REGISTER

FFC609 - FFC63F RESERVED

FFC641 - FFC77F UNUSED

FFC781 CHARACTER REGISTER (2653)
FFC783 STATUS RBEGISTER

FFC785 MODE REGISTER

FFC787 BLOCK CHARACTER CHECK REGISTER

FFC789 - FFC7TBF RESERVED

FFC7C1 RAM BUFFER PORT ADDRESS
FFC7C3 - FFC7FF RESERVED

ASSEMBLER AND SDT MANUAL 13

SAGE MEMORY MAP
RAM Memory Allocation

I1.05 RAM Memory Allocation :

The present single user RAM allocation provides a full 64K
byte p-System data area. The code pool is also a maximum
possible 64K. System managers allocating memory for a
multi-user system should refer to the SAGE™ IV TECHNICAL
MANUAL for more information.

The suggested allocation gives room in the Interpreter and
BIOS areas for growth without requiring a configuration
change. The two word floating point interpreter currently
occupies about 9.5K and the four word interpreter currently
occupies about 10.5K. A 12K area has been allocated for the
interpreter. The current BIOS and buffers occupy between
18K and 32K depending on your system (ie., whether you have
a hard disk or not). The BIOS takes as much memory as it
needs from the top of the system's equipped memory and sets
the top of RAM Disk to below its base. The BIOS size is
expected to grow as more features are added.

Experienced users may want to reconfigure the starting
location and size of the p-System code pool using the
SETUP.CODE program. This should be done carefully as no
cross checks are made for mistakes which cause overlap of
areas. Note also that the base of RAM Disk may be changed
with SAGE4UTIL.CODE if the code pool is reduced below
23400H.

Users with 128K floppy based systems will need to reduce the
size of the code pool, and possibly the data space. Also,
no Ramdisk can be configured on systems this size.

The starting address of the interpreter is hard coded in the
p—-System bootstrap file SAGE.PBOOT.TEXT. Also hard coded in
this file are the base and size of the p-System data area.
These values and locations will generally never need to be
modified because a full 64k data area is desirable.

14 ASSEMBLER AND SDT MANUAL

SAGE PROMS

III SAGE PROMS :

The present SAGE PROMS occupy 16K at addresses FEOOOO-FE3FFF
(hex). The PROMS contain the following:

THE SAGE STARTUP TEST
System-wide tests (which are switch-selectable) are
performed on power-up or reset. These tests include
memory sizing and testing, and PROM checksum
verification.

INITIALIZATION AND BOOTSTRAP ROUTINES
The PROMS contain routines to initialize the system
and boot from a floppy disk or a hard drive.

I/0 SUBROUTINES
A set of low-level I/O subroutines is provided to
access the user's keyboard and terminal, the floppy
drives, and the Winchester drives.

THE SAGE DEBUGGING TOOL
The PROMS contain a powerful debugging tool which
provides a complete environment for debugging
machine-level programs. Its operation is explained
later in this chapter.

ERROR HANDLING
PROM routines handle all exception errors such as
bus errors, address exceptions, etc.

Note: The SAGE can accomodate larger PROMS using strapping
changes discussed in the TECHNICAI, MANUAL.

ASSEMBLER AND SDT MANUAL 15

SAGE PROMS
PROM VERSIONS

III.01 PROM VERSIONS :

A list of PROM versions follows:

VERSION # DATE DESCRIPTION
1.0 13-JUN-82 SAGE II (floppy-based SAGE IV)
initial release
1.2 20-DEC-82 General update
2.0 18-MAR-83 Update to 16K PROMS (2764's)
for Winchester disk drives
2.1 08-AUG-83 General update

SAGE users with service capabilities may purchase new PROMs
at the normal spare parts cost. No strapping changes are
required to upgrade from the 8K to 16K PROMS.

In general, changes to SAGE software and hardware are

documented in the "SERVICE MANUAL'" which can be ordered
through your dealer.

16 ASSEMBLER AND SDT MANUAL

SAGE PROMS
PROM START-UP TESTS

III.02 PROM START-UP TESTS :

The SAGE performs a number of system-wide tests whenever it
is turned on or RESET. This section documents these
activities.

On power-up or when the processor is RESET, the address of
the SAGE PROMs changes from FEOOOO to 000000. The processor
reads the initial stack pointer and initial start vector
from PROM locations O and 4 respectively. The start vector
points to an address where the PROMS normally reside (>
FE0000). When this address 1s executed, the hardware
switches the PROMS back to their normal address location.
The PROMS remain at their normal location (FEOOOO - FE3FFF)
until a power-down or RESET.

A processor diagnostic is run on power-up to check the
integrity of the CPU. Registers are set and read and a
selected instruction set is run. If the test fails, the
processor will stop and the CPU light on the front panel
will be red.

A PROM test is run next. It calculates a simple checksum on
the PROM area to insure that the PROM startup program itself
is ok. If an error is detected, the message "PROM 1 Bad" or
"PROM 2 Bad" is displayed. Note that if the PROM is bad in
a portion of the program needed for the test or printout,
the system may fail to respond with any output. PROM 1
refers to the even memory addresses while PROM 2 refers to
the odd memory addresses.

Next, the terminal bhaud rate is determined by reading GROUP-
A DIP switches on the rear panel. Communications always
uses 8 data bits, 1 stop bit and even parity. (See figure
on next page)

ASSEMBLER AND SDT MANUAL 17

SAGE PROMS

PROM START-UP TESTS

SW

18

GROUP A

TN

o]

1 23 567

> - > 4 > @G>
> > - - > > <G G
> > > -

|
|
|
|
|
|
|
|
|
|
\J
A

|
|
I
|
|
|
|
|
l
|
|
|
I
v
A
|
A

TERMINAL BAUD RATE
8 data bits, | stop bit and even parity.

19.2 K baud

9600

4800

2400

1200

600

300

reserved, will default to 19.2K baud

PARITY CONTROL
even parity enabled

disabled

BOOT DEVICE
boot to DEBUGGER

boot to Floppy drive @.

boot to first partition of Winchester drive @.

reserved, defaults to DEBUGGER

FLOPPY CONFIGURATION

96 TPI drive
48 TPI drive

reserved

ASSEMBLER AND SDT MANUAL

SAGE PROMS
PROM START-UP TESTS

Note: For normal operation, the PROMs require
that switch 8 of the Group-A DIP switch be set
off (down). Switch 8 is used to cancel the
memory test or select various maintenance and
debugging options on startup.

On startup, the remote serial channel defaults to 9600 baud
with 8 data bits, 1 stop bit, and even parity. Use the PS
command under SDT to change the rate for stand-alone
applications.

An indication of a USART failure is provided via rapid
blinking of the Processor ILED. When initially trouble-
shooting a "dead" system it is important to know if the
processor is communicating with the terminal I/0 circuits.
If the processor IFKD blinks rapidly on startup, this
indicates that the terminal USART is not responding. The
USART transmit flag should go busy when a character is
transmitted but should never stick in the busy state.

The processor must be reset to get out of the rapidly
blinking LED indication. This check is only present in the
PROM resident terminal driver and is not in the BRIOS.

The floppy drive option switch is read to determine which

drive 1is installed (always double-density, double-sided
format).

GROUP A

10000000

SW | 234567 8 FLOPPY CONFIGURATION

¥ 96 TP drive
& 48 TPI drive

ASSEMBILER AND SDT MANUAL 19

SAGE PROMS
PROM START-UP TESTS

After each of these tests have been completed successfully,
the display should read:

Sage IV Startup Test

20 ASSEMBLER AND SDT MANUAL

SAGE PROMS
RAM MEMORY TEST

I11.03 RAM MEMORY TEST :

During normal operation, the "SAGE Startup Test performs a
memory test after the previous tests bhave executed
successfully. Because the SAGE memory test destroys the
previous contents of RAM, however, this option may be
disabled (see below).

The first 128k of RAM is checked in the following manner:

1) A long word (4 bytes) is set to
00000000 and read back.

2) The long word is set to FFFFFFFF
and read back.

3) The long word is set to the value
of its own address for later testing,
and the test proceeds to the next
long word.

When all 128K is done, each long word is read to see if it
still contains its address. Then the top word of each 128K
bank is read to see if that bank exists. Once the size of
the additional memory is determined, it is checked just as
the first 128K was.

The memory test takes a few seconds. If no errors are
detected, the system displays:

RAM SIZE = XXXX

If a bad memory location is found, an error message 1is
displayed:

BAD memory & (addr) is xxxxxxxx instead of yyyyyyyy

The program stops at the first bad location it finds.
Because it re-reads the location to print out the error
message, the error value may be the expected value if the
RAM 1is intermittent and reads correctly the second time.
The processor will attempt to enter the debugger after a
memory error. If the failed memory occurs in the debugger
stack area (working down from 400H), the debugger may fail

ASSEMBLER AND SDT MANUAL 21

SAGE PROMS
RAM MEMORY TEST

to operate correctly after the memory error.
@ DISABLING THE MEMORY TEST

Occasionally while developing assembly code programs it is
necessary to look at a post mortem dump of memory after a
system lockup. Resetting the SAGE IV normally causes all of
memory to be modified during memory testing and causes the
default TRAP vectors to be initialized. A method has been
provided which will allow entry into the Debugger (SDT) on
reset with minimal modification of memory.

To override the normal startup sequence, set Switch 8 of
Group A to On, and Switches 5 and 6 of Group A to Off. When
you do a RESET now, the terminal will display "SAGE IV
Startup Test" followed by "Bypassed Init". The processor
immediately enters SDT. The displayed contents of all the
registers will be invalid because they are not saved on
RESET. SDT uses stack memory from location 400H downward,
so a few locations in that area will be modified. A flag at
location 104H is cleared so that SDT will not attempt to use
the BIOS.

Do not try to use any commands other than Display Memory
(DM) before re-initializing the system. Initializing the
system may be accomplished with the IS command. Remember to
set Switch 8 to Off and Switches 5 and 6 back to your
desired bootstrap selection.

22 ASSEMBLER AND SDT MANUAL

DISK BOOTSTRAP

IV DISK BOOTSTRAP :

The SAGE STARTUP test ends by reading the bootstrap switches
from the GROUP-A DIP switch to determine what device/program
to boot to:

GROUP A

L 000and

SW |1 2345678 BOOT DEVICE

boot to DEBUGGER

boot to Floppy drive @
reserved, defaults to DEBUGGER
reserved, defaults to DEBUGGER

> - > -
> > o -

The "boot" process requires that the device have on it a
small program at most 2 blocks long. The STARTUP program
loads and runs this "bootstrap" program which loads and runs
an operating system (such as the p-SYSTEM.) The boot
program is usually specific to the operating system being
loaded. However, it must conform to the following SAGR
protocol.

SAGE IV™ bootstrap programs must have the first four bytes
of the code (at 400H) set to the ASCII characters 'BOOT'.
In Hexadecimal, these bytes are = 42 4F 4F 54 . This data is
checked by the STARTUP loader. If it is not present the
system displays:

Not BOOT Disk

ASSEMBLER AND SDT MANUAL 23

DISK BOOTSTRAP

If this " header" data is correct the boot program will then
be started at location 404H. The bootstrap is entered in
Supervisor mode. Details of the bootstrap programs for the
p-System follow. For operating systems other than the p-
System, refer to the literature you received with your
operating system.

IV.01 p-SYSTEM FLOPPY BOOT :

The floppy bootstrap program is located on blocks O and 1 of
the floppy diskette. It is loaded by the STARTUP program
from one of two ways.

1. If the switches SWH and SW6 are set to boot to
the floppy on reset.

2. If the 'IFx', initialize from floppy command, is
typed from the SDT.

Either way will cause the first two blocks of the diskette
to be read into RAM at location 400H.

If a timeout occurs while trying to access the floppy, the
program assumes that there is no diskette there and
displays:

Put in BOOT disk and press a key (Q@ -quits)

Typing a "Q" will display

Boot aborted on drive O

and control will go to the SDT. Typing any other key will
cause a re-try to boot from the device.

If a disk error occurs, one of the following error messages
will be given:

Drive error (code) on drive (0 or 1)

24 ASSEMBLER AND SDT MANUAL

DISK BOOTSTRAP
p—SYSTEM FLOPPY BOOT

where codes are:

01 —controller failure
02 ~invalid command
03 -recalibrate or seek failure

04 —-timeout

05 -missing address mark
06 -no data found

07 —overrun

08 ~CRC error

09 -end-of-cylinder

OA -unknown

0B -address out-of-range

When the bootstrap is executed, the stack contains a return
address which may he used (in case of boot failure) to
return to the debugger. Below the return address on the
stack (at=-4(A7)) is a word containing the drive number: O
for the left drive or 1 for the right drive.

Then the BIOS program is called. (The last part of this
section describes that process.)

The source file of the single-user p-SYSTEM floppy bootstrap
is called SAGE.PBOOT.TEXT. The file is assembled normally
but not Linked or Compressed. The resulting file
SAGE.PBOOT.CODE 1is installed on a diskette wusing the
Bootstrap Copy facility of the SAGE4UTIL program.

Note: The standard p-System utility BOOTER.CODE
should not be used for installing the bootstrap
(unless the extra steps of Linking and
Compressing are performed). Note that in
Version IV code files there is one block plus a
26 byte header ahead of the actual code in an
unCOMPRESSED code file.

The routines TERMTEXT, TERMCRLEF, and FDREAD in the PROM
Debugger are used by the Bootstrap program for terminal and
floppy I/0. Note that these routines are accessed via a
macro which generates the necessary long absolute addresses.

ASSEMBLER AND SDT MANUAL 25

DISK BOOTSTRAP
p-SYSTEM FLOPPY BOOT

@ FLOPPY FORMAT
The default floppy driver 1s set for 8 sectors/track, 512
bytes/sector. There is no track-to-track skew and no
interleaving.

The system can be used to determine the maximum sector on
the diskette and allows booting to 8, 9, and 10 sector/track
double-sided diskettes (SAGE Format). We do not support
booting to a Network Consulting 10 sector diskette which has
a different sector numbering scheme and a different sector
numbering scheme and a different track layout. Also IBM
diskettes cannot be hooted because of their different track
layout.

SAGE4UTIL may be used to set up a bootable 10 sector format
by selecting the SAGE 10 sector format menu. Although this
option is available, it is not guaranteed by SAGE to work on
all systems and is not recommended as a distribution format.

IV.02 p-SYSTEM WINCHESTER BOOT :

The p-SYSTEM Winchester bootstrap is much like the floppy
bootstrap. The bootstrap program is located on blocks 0 and
1 of the Winchester partition. It is loaded by the STARTUP
program from one of two ways.

1. If the switches SW5 and SW6 are set to boot to
the first Winchester drive partition #1 on
reset.

2. If the 'IHx #n', initialize from partition
command is typed from the SDT.

Fither way will cause the first two blocks of the partition
to be read into RAM at location 400H.

If a disk error occurs, one of the following error messages
will be given:

Drive error (code) on drive (0 or 1)

26 ASSEMBLER AND SDT MANUAL

DISK BOOTSTRAP
p—-SYSTEM WINCHESTER BOOT

where codes are:
01 —-could not initialize VCO

03 -recalibrate/seek failure
04 —drive not ready

08 -CRC error

OB -address out of range

oC —-wrong cylinder

0F -bad device number

Then the BIOS 1is called. (The last part of this section
describes that process.)

The source file of the p-SYSTEM Winchester bootstrap is
called SAGE.WBOOT.TEXT. The file is assembled normally but
not Linked or Compressed. The resulting file
SAGE.WBOOT.CODE is installed on a Winchester partition using
the Bootstrap Copy facility of the SAGE4UTIL program.

Note: The standard p-System utility ROOTER.CODE
should not be used for installing the bootstrap
(unless the extra steps of Linking and
Compressing are performed). Note that in
Version IV code files there is one block plus a
26 byte header ahead of the actual code in an
unCOMPRESSED code file.

The routines TERMTEXT, TFERMCRLF, and WDREAD in the PROM
Debugger are used by the Bootstrap program for terminal and
Winchester I/0. Note that these routines are accessed via a
macro which generates the necessary long absolute addresses.
The PROM routine will have already selected the drive, so a
call to WSELECT is not required.

IV.03 LOADING THE p—SYSTEM BIOS :

The p-System Bootstrap first reads in the 4 block p-System
directory from block 2 of the floppy or Winchester
partition. Then the file SYSTEM.BIOS is found and the first
block of the file is read. The first four bytes of the BIOS
code are checked for the four ASCII characters 'BIOS'. If
the proper BIOS data is found the complete SYSTEM.BIOS file

ASSEMBLFR AND SDT MANUAL 27

DISK BOOTSTRAP
LOADING THE p-SYSTEM BIOS

is read in at the top of all RAM memory. Otherwise, the
message 'Not BIOS code in SYSTEM.BIOS' is output and the
bootstrap returns to SDT.

Here are some items of interest contained in the
SYSTEM.BIOS:

Offset 4 from the start of the code in the
SYSTEM.BIOS file is the size of the BIOS code.

Offset 6 is the size of the RAM buffer area
which is allocated preceding the code. This
size is a worst case value for a Winchester
based system. Floppy only based systems will
determine dynamically at BIOS initialization
that they do not need the extra space for the
Winchester and extra serial channel buffers.

Offset 8 is the offset of the RIOS
Initialization routine address from the
beginning of the code.

Also the RAM Disk hoot flag and base address are
taken from the configuration area in the BIOS
file.

The BIOS Initialization routine is executed which sets up
all the hardware and drivers and turns on interrupts. The
Debugger is set up to use the BIOS terminal driver.

Once the BIOS is initialized, the bootstrap uses the BIOS
1/0 calls for the remaining disk information. The BIOS
channel map 1is scanned for the Winchester device and
subdevice number to find the 1logical channel used for
booting.

The file SYSTEM.INTERP is read into its position in memory
above the p-System data area and below the p-System code
pool area. If the RAM Disk boot flag is set, files from the
disk are copied to the RAM Disk area. The new directory on
the RAM Disk is RAMDISK. A file called ENDBOOT on the

28 ASSEMBI.ER AND SDT MANUAL

DISK BOOTSTRAP
LOADING THE p-SYSTEM BIOS

source device will terminate the copy process.
Finally the processor is put into User mode and several
arguments are put on the User stack for initialization of

the p-System Interpreter. The routine then transfers to the
beginning of the Interpreter.

ASSEMBLER AND SDT MANUAL 29

PROM ENTRY POINTS

V ~ PROM ENTRY POINTS :

The SAGE PROMS contain a set of polled I/O routines to
access the terminal, the floppy disk drives, and the
Winchester disk drives. Following is a list of fixed entry
points which allow bootstraps and other stand-alone (without
BIOS) routines access to I/0 facilities.

Routines in PROM may be called using MACRO assembly
procedures (see the SOFTECH ASSEMBLER MANUAL) to create the
long address given. The macro 1is necessary because the
assembler only generates addresses with the short direct
addressing mode. The listed offset for each routine should
be used as the macro argument. The offset + FEOOOOH is the
actual address of the routine.

The routines must be called in the 68000 SUPERVISOR mode,
not user mode.

THE LONG JSR MACRO:

.MACRO LJSR

.WORD 4EB9H
.WORD - OOFEH
.WORD Al
.ENDM

THE LONG JMP MACRO:
-MACRO LJMP
.WORD 4EF9H
.WORD OOFEH
WORD %1

-ENDM

30 ASSEMBLER AND SDT MANUAL

PROM ENTRY POINTS

1. KEYBCH - Get a Keyboard Character. Offset=8H

This routine waits for and returns a character from the
terminal port. Bit 7 is always cleared and lower case
alphabetic characters are converted to upper -case. The
character is returned as a byte in register DO.

On entry: Use IONG JSR MACRO: LJSR KEYBCH

On exit: DO= typed character
Registers used: DO

2. KEYCHK - Check for a Keyboard Character. Offset=0CH

This routine tests the terminal USART to determine if a
character is available for input.

On entry: Use LONG JSR MACRO: LJSR KEYCHK
On exit: condition code NE if char is available
i "EQ " " not available

Registers used: none

3. TERMCHAR - Output a Character to Terminal. Offset=14H

This routine outputs the character from the low byte of DO
to the terminal port.

On entry: Use LONG JSR MACRO: LJSR TERMCHAR
DO= character for output
On exit: Registers used: none

ASSEMBLER AND SDT MANUAL 31

PROM ENTRY POINTS

4, TERMTEXT - Output a Text String. Offset=18H

This routine outputs a string of characters to the terminal.
Register AO is the address of the base of the string and the
string must be terminated with a zero byte.

On entry: Use LONG JSR MACRO: LJSR TERMTEXT
A0 = pointer to first character of string
On exit: Registers used: AO

(A0 points to byte beyond zero terminator)

5. TERMCRLF - Print a Carriage Return/Line Feed. Offset=1CH
This routine outputs a carriage return and line feed to the
terminal. Also five nulls are output after the characters
for terminals which need extra time after a vertical
positioning change.

On entry: Use IONG JSR MACRO: LJSR TERMCRLF
On exit: Registers used: none

6. TERMHEXB - Output a Hexadecimal Byte. Offset=20H

This routine outputs a two-character hexadecimal value
contained in the low byte of register DO.

On entry: Use LONG JSR MACRO: LJSR TERMHEXB
DO = byte value to be output
On exit: Registers used: none

32 ASSEMBLER AND SDT MANUAIL

PROM ENTRY POINTS

7. TERMHEXW - Output a Hexadecimal Word. Offset=24H

This routine outputs a four-character hexadecimal value
contained in the low word of register DO.

On entry: Use LONG JSR MACRO: LJSR TERMHEXW
On exit: Registers used: none

8. FDREAD - Floppy Disk Read. Offset=28H

This routine reads data from a floppy diskette and stores it
in memory. The parameters defining the read are passed on
the stack. The typical calling sequence is:

MOVE.W BLOCKNUM,~(SP) ;logical block no. (2 bytes)
MOVE.L MEMADDR, -(SP) ;Memory buffer addr (4 bytes)
MOVE.L NUMBYTES ,-(SP) ;Number of bytes (4 bytes)
MOVE . W DRIVENUM,-(SP) ;Drive no. 0 or 1 (2 bytes)
LJSR FDREAD

On entry:
Use LONG JSR MACRO: LJSR FDREAD
Stack (from top - last in)

4 byte return address (stored by LJSR)

2 byte drive number (O=left drive, l=right drive)
4 hyte size in bytes

4 byte memory address

2 byte logical block # (each block = 512 bytes)

On exit:
DO = error type (0 = no error)
condition code NE if transfer failed.
Registers used: DO,D1,D2,D3,D4,D5,D7,A1,A4

ASSEMBLER AND SDT MANUAL 33

PROM ENTRY POINTS

9. FDWRITE - Floppy Disk write. Offset=2CH

This routine writes data from memory to a floppy diskette.
The parameters defining the write are passed on the stack
(see example in Floppy Disk Read above).

On entry:
Use LONG JSR MACRO: LJSR FDWRITE
Stack (from top - last in)

4 byte return address (stored by LJSR)

2 byte drive number (O=left drive, l=right drive)
4 byte size in bytes

4 byte memory address

2 byte logical block # (each block = 512 bytes)

On exit:
DO = error type (0 = no error)
condition code NE if transfer
Registers used: DO,D1,D2,D3,D4,D5,D7,A1 ,A4

10. BOOTSX - Floppy disk boot. Offset=38H

This routine boots from the floppy disk in the drive
specified by the word on the top of the stack. The typical
calling sequence is:

MOVE.W DRIVENUM,~-(SP) ;Drive number O or 1
LIMP BOOTSX

On entry:
Use LONG JMP MACRO: LJMP BOOTSX
Stack (from top)
2 byte drive number (0=left drive, l=right drive)

On exit: Never returns!

34 ASSEMBLER AND SDT MANUAL

PROM ENTRY POINTS

11. WSELECT - Winchester Select. Offset=40H

This routine selects the Winchester drive and partition that
will be accessed. NO registers are preserved.

On entry: Use LONG JSR MACRO: LJSR WSELECT
Stack (from top - last in)

4 byte return address

4 byte partition number (0-15)
or pointer to a name (> 16)

2 byte drive number (0-3)

Note that the 4 bytes for the partition can be interpreted
two different ways. If the long word value is less than 16
then it is assumed to be the partition number. If greater
than 16, the long word is interpreted as an address which
points to the partition name. The name nmust be 8 bytes long
with zeros filling any unused bytes.

12. RDCHAN9 - Read Winchester channel 9. Offset=03CH

This routine reads the Winchester partition selected. Note
that the partition must have been selected by the WSELECT
call,

On entry:
Use LONG JSR MACRO: LJSR RDCHAN9
Stack (from top — last in)

4 byte return address

4 byte length of transfer (in bytes)
4 byte starting memory address

4 byte logical block number

On exit:
Registers used: DO,D1,D2,A0,Al

ASSEMBLER AND SDT MANUAL 35

PROM ENTRY POINTS

13. DEBUG - Debugger Entry Point. Offset=30H

This is a non-returning entry point to the PROM Debugger
(SDT) for use when terminating a user environment or a
failure during a bootstrap.

On entry: Use LONG JUMP MACRO: LJMP to Debug
On exit: Never returns!

36 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL

VI SAGE DEBUGGING TOOL :

SDT is a powerful tool for analyzing program operation. SDT
allows you to display and modify memory and registers,
disassemble instructions in memory, trace portions of a
program, set breakpoints, and boot to a floppy or hard disk
drive.

SDT can be entered several ways:
1) On power-up or reset (Group A switches 5 and 6 off).

2) On all EXCEPTION errors that have not been
re-defined by the user.

3) Via a breakpoint (TRAP #15.)
4) Via jump vector in PROM (see page 36.)

5) Via BIOS call TRAP #14., Function=0 (see the
TECHNICAL MANUAL).

SDT can use either the PROM polled I/0 routines or BIOS
routines for input/output. In some circumstances
(especially after certain EXCEPTION errors which revert to
PROM 1/0), conflicts can arise if both types of drivers are
in use on the same device at the same time. To resolve such
conflicts, use TRAP #14., Function=3 or 4 (see the TECHNICAL
MANUAL) to install the proper I/0 routines before entering
the debugger.

ASSEMBLER AND SDT MANUAL 37

SAGE DEBUGGING TOOL

VI.01 SDT PHILOSOPHY :

Most SDT commands consist of two characters followed by
optional arguments. SDT prompts the user for a command with
a ">". All arguments are assumed to be hexadecimal unless
preceded by a "/" to indicate a decimal value.

EXAMPLE:

>DM 1000,#A (bisplay 10 bytes of memory starting at 1000H)
00001000: 0011 2233 4455 6677 8899

>bM 1000,#/10 (Display 10 bytes of memory starting at 1000H)
00001000: 0011 2233 4455 6677 8899

SDT skips over commas and spaces between arguments. No
space 1is required between an SDT command and the first
argument ("DM1000" and "DM 1000" are equivalent), but a
register specification is interpreted as part of an SDT
command and may not be separated by a space:

>DD5S (Display register D5)
>0D 5 (Illegal syntax)

VI.02 SDT REGISTER USAGE

SDT provides base registers to simplify data entry and
address arithmetic. let's suppose that you have a source
listing of a relocatable program. The listing address
begins at OOOOH, but the beginning of the program in memory
might be 5700H. Normally, you would add 5700H to each
address in your listing to find the equivalent address in
memory. However, if you set an SDT base register to 5700H,
SDT will perform the addition for you.

EXAMPLE :
We wish to disassemble the instruction at listing address
1F7FH. Our program starts at 5700H.

>s$$1 5700 (Set base register $1 to 5700H)
>AD $1+1F7E,#1 (Disassemble one instruction)
0000767 00001F7E: MULU (A5)+,D6 (1st address: absolute)

(2nd address: relative)

38 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT REGISTER USAGE

If we wish every address we enter to he added to the same
offset, we can define a "standard base register."

>s$1 5700 (Set base register $1 to 5700H)

>$1 (Set $1 to standard base register)

$1>AD 1F7E,#1 (Disassemble one instruction)
0000767 0D0001F7E: MULU (A5)+,D6

The SDT prompt now appears "$1>" as a reminder that every

address we enter will be added to base register one.

VI.03 SDT QUICK DESCRIPTION :
Detailed descriptions of commands follow in the next
section.

Base registers

$0 Absolute base register (always equals zero)
$1 User base register 1
$2 User base register 2

Breakpoint registers
0 User breakpoint register O
1 User breakpoint register 1

Argument format
Any argument can be specified in decimal if preceded by "/".

addr An address specified by up to 8 hex digits
[$x+]addr An address added to a base reg. (optional)
'ssss! Data interpreted as an ASCII string

byte Data specified by up to 2 hex digits

word Data specified by up to 4 hex digits

long Data specified by up to 8 hex digits

#n A count used to display n bytes, disassemble

n instructions, etc.

ASSEMBLER AND SDT MANUAL 39

SAGE DEBUGGING TOOL
SDT QUICK DESCRIPTION

Command summary
Arguments enclosed in brackets are optional.

Page
P25 USROG b M smsio s e ss O
Set standard base reg. x
B eosensswimnns R A R °
Clear standard base reg
YAD o wiviee A e o . 64
Disassemble 20 1nstructlons
from current display loc.
SAD [Pxt]addr oo s sss s 5w eses owes 64

Disassemble 20 instructions
starting at addr

>AD [$x+]addrl,[$x+]addr2....... 64
Disassemble instructions
from addrl through addr2

YAD [$x+]addr,#N.eeeeeeececcenns 64
Disassemble n instructions
starting at addr

AR lTongl , Tong2s s ¢ s s vae s i 52
Arithmetic computation

ODAEX) a: siais o 5 wewivm o oo 5w wesiie s 9 . 83
Display A registers or Ax

>DB[x].. 6% wursaie o8 e ets s erdreiaie 67
Dlsplay breakp01nt regs.
or breakpoint register x

D) 2] - of [P s D3
Display D reglsters or Dx

40 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT QUICK DESCRIPTION

from current display location

>DM [$x+]addr....... ¢ R e R 57
Display 256 bytes of memory
starting at addr

>DM [$x+]addrl, [$x+]addr2....... 57
Display memory from
addrl through addr2

DM [$x+]addr, e eeee.. e S e 57
Display n bytes of
memory starting at addr

IP.; 2% ¢ aned o BF &l m R a0 s 68 viaia o 5 wis . 54
Display program counter

DR 5.5 o 9 oiansa V3w 16 9 ous 4 34 3 04 4 0 08 93
Display all registers

MBsswsoosninnses R R T S TP 1
Display status register

PDT %] e ssioes o) #E f w cwmaen swem 0D
Display current trace mode
for all traps or trap x

Display user stack pointer

PAD1] [, (P o 8 50) R 6 50
Display base regs. or $x

SERIZE Iis o ww 605 5 5w mimss sowis aew e 75
Exercise floppy read

SEW[X]evereooacannsnnnns G ERBES 75
Fxercise floppy write

ASSEMBLER AND SDT MANUAL 41

SAGE DEBUGGING TOOL
SDT QUICK DESCRIPTION

>FB [$x+]addrl,[$x+]addr2, byte. 59
Fill memory addrl through
addr2 with byte

>FB [$x+]addr, #n, byte......... 59
Fill memory with n bytes
of byte starting at addr

>FL [$x+]addrl, [$x+]addr2, long. 60
Fill memory addrl through
addr2 with data long

>FL [$x+]addr, #n, long......... 60
Fill memory with n long
words of long starting
at addr

>FW [$x+]addrl, [$x+]addr2, word. 59
Fill memory addrl through
addr2 with data word

>FW [$x+]addr, #n, wordeeeeeee.. D9
Fill memory with n words of
word starting at addr

>GC [[$x+]addr]eceecescecesacnas 68
Execute program at PC or addr
if specified

GO [[$x+]addr].eeeeeen.. et 68
Execute program, resetting
breakpoint counts

>GS [[$x+]addr]e.eeee... veeeeeee 73
Execute subroutine call at
PC or addr
YIF[X]sonaswassmssserssnassse v 4T

Boot from floppy drive O or x
(O=left drive, l=right)

42 ASSEMBILER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT QUICK DESCRIPTION

PLIFR[E] oo w winimiodin o o s teeeseaanene 48
Boot from floppy drive O or x
without loading RAMDISK

>IH[x] [#n,name]..... cevessamens A8
Boot from hard disk O or x

>IHR[x] [#n,name]..c.eeeeenennns .. 49
Boot from hard disk without
loading RAMDISK

PISaswepsaan S SYERE A EE s e wretw Ll
Initialize System

PLie o5 55 006 55 % 008 58 w eun e & ® & bow > w0 3 wue 80
Load from a remote device
(Motorola object code format)

>LF[{x] block,[$x+]addr,count.... 74
l.oad count bytes into
addr from block # block
of floppy drive O or x

D Y T R T 80
(in Motorola object code format)

M [$x+]addrl, [$x+]addr2,
[$x+]addr3...... 60
Move data from addrl
through addr2 to addr3

M [$x+]addrl,#n, [$x+]addr2..... 60
Move n bytes from addrl
to addr2

>POB [$x+]addr,byte..ceececcanns 7%

Output data byte to port

ASSEMBLER AND SDT MANUAL 43

SAGE DEBUGGING TOOL
SDT QUICK DESCRIPTION

SPOW [$x+]addr,word...ceeeeeaen. 76
Output data word to port

>PIB [$xt+]addr..ccvececscceceees 76
Input data byte from port

SPIW [$x+]addressssecsssssvisssee 79
Input data word from port

Set remote baud rate

>SA[X] [1ongleeeeeeeeeneeeenaens 56
Modify A registers or Ax

>SB[x] [[$x+]addr],[passcount]... 67
Set breakpoint regs or Bx

>SD[x] [longleseeeeaaass 5 % e RS 56
Modify D registers or Dx

>SM [$x+]addr.ceeeeneas. seosssmes D8
Modify memory

PSP [longlessssvessensosssss wses OO
Modify Program counter

PSR svonmens e uisie B e ng ey e e 56
Modify all reglsters

88 [longlecenssssesnin sanwnawes DO
Modify Status Register

OT[x] [T,N Laswwavinwwseneswaoes 72
Set Traps for Tra01ng

>SU [longleces.. T . 56
Modify User Stack pointer

YSP[x] [1OHL]eessssnssenanssssns 50
Modify base regs. or $x

44 ASSEMBI.ER AND SDT MANUAL

SAGE DEBUGGING TOOL,
SDT QUICK DESCRIPTION

DTB [[$x+]addr]eeeeeereeeneenns . 70
Trace without reg. print
starting at PC or addr

T 5 waw ol s s o w v o &8 & e w o 1
Terminate trace mode

PINIE] sonwsassannos &% B & 6 N e W 71
Trace next x instructions

DTNI[X]eoeooooocosoasoncnnsacnns 71
Trace next x instructions,
interruptible '

>TR [[$x+]addr]..... SEE R e e 70
Begin Trace Mode with register
display

>WF[x] block,[$x+]addr,bytecount 74
Write count bytes from
addr to block # block
of floppy drive O or x

>XB[$x+]addrl, [$x+]addr2, 61
byte, [maskbyte]......
Search memory addrl through
addr2 for byte after
masking with maskbyte

>XW[$x+]addrl, [$x+]addr2,
word, [maskword]...... 61
Search memory addrl through
addr2 for word after
masking with maskword

>XL[$x+]addrl, [$x+]addr2,
long, [masklongl...... 62
Search memory addrl through
addr2 for long after
masking with masklong

ASSEMBLER AND SDT MANUAL 45

46

SAGE DEBUGGING TOOL
SDT QUICK DESCRIPTION

SXM[$x+]paddrl, [$x+]paddr2, 62
[$x+]addrl, [$x+]addr?....
Search memory addrl through
addr2 for pattern in memory
paddrl through paddr2

T2imsonsinssoewesesaas e e 69
{CR> Trace next instruction
(active only when SDT is in
Trace Mode)

ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

V.04 SDT DETAILED DESCRIPTION
Initialization and boot commands

>IS Initialize system
IS disables interrupts, clears and retests
memory, and vresets all SDT registers and
breakpoints. IS performs exactly as a system
reset would.

>IS System reinitiatizing....
SAGE IV Startup Test [2.1]

RAM Size = 1024K

>

>IF[x] Boot from floppy disk

IFx boots from floppy drive x (x=0 for left
drive, 1 for right drive, no x defaults to left
drive).

SDT reads 1K of data from logical blocks O and 1
of the diskette into memory starting at location
400H. It then checks that the first four bytes
are the ASCII characters 'BOOT' (42H, 4FH, 4FH,
and 54H) to verify that the diskette has a
bootstrap program installed. The bootstrap
routine is then called at location 404H with the
booting drive number (O or 1) previously placed
on the stack. If the bootstrap routine returns
to the calling program, control reverts to SDT.

>IF (Boot from floppy drive 0)
Booting from Floppy
UCSD p-System IV.1 Bootstrap (or whichever operating system you use)

Copying to RAM Disk (Copy system files to RAM Disk)

ASSEMBLER AND SDT MANUAL 47

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

48

>IFR[x] Boot from floppy disk, preserving
RAMDISK

IFR functions similar to the IF command, except

RAMDISK is not Jloaded during the boot process.

IFR is usually used to recover information in

RAMDISK after the user accidentally exits his

environment.

The SYSTEM.BIOS and SYSTEM.INTERP are still
required to be taken from the floppy diskette
(and therefore do not need to be resident in
RAMDISK). Once these files are loaded, the
system will boot to RAMDISK (if it was
originally configured to do so) without first
copying the files. This means that
SYSTEM.PASCAL, and SYSTEM.MISCINFO must still he
present in RAMDISK. Note that 1if the user's
exit was caused by a program crash, RAMDISK may
no longer contain valid files and the boot may
fail.

>IH[x] [#n,NAME] RBoot from hard disk

The IH command allows the user to boot to a
system from a hard drive. All partitions
(except the special case #0) are capable of
being booted to. A bootahle partition must have
the SYSTEM files necessary to rum that

operating system. IH has the following
formats:
IH Boots to the default partition, drive O,

partition 1. This is the same partition
that will boot on power-up or RESET if
SW6 and SWS (port A) are set up and down
respectively.

ASSEMBLER AND SDT MANUAL

IHx

IHx #n

IH NAME

IHx NAME

IHRx #n

>IHR[x] [#n]

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Where x is drive number O through 3.
This boots to partition 1 on the drive
specified.

Where x is the drive number O through 3
and n is the partition number
1-9,A,B,C,D,E,F where A through F
represent partitions 10 through 15
respectively.

Defaults to drive 0, where NAME is the
partition name.

Where x is the drive number (0-3) and
NAME is the name of the partition.

The RAMDISK boot command IHR may be used
once the system has already been booted
to a partition. It is generally used to
recover information in RAMDISK when the
user accidentally left the partition as
IHR does not clear RAMDISK (the 1IH
commands do). The SYSTEM.BIOS and
SYSTEM.INTERP are still required to be
taken from the partition (and therefore
do not need to be resident in RAMDISK).
Once these files are loaded, the system
will boot to RAMDISK (if it was
originally configured to do so) without
first copying the files. This means
that SYSTEM.PASCAL and SYSTFM.MISCINFO
must still be present in RAMDISK. Note
that if the partition was left due to a
program crash, RAMDISK may no longer
contain valid files and the boot may
fail.

Boot from hard disk, preserving RAMDISK

See IH command.

ASSEMBLER AND SDT MANUAL 49

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Base register commands

>D$[x] Display base register

D$x displays the contents of base register x (x=0,1,2). If
no x is specified, the contents of all three base registers
are displayed.

>D$ (Display all base registers)
$0: 00000000 00005700 00200000
>D$2 (Display base register $2)

$2: 00200000

>S$[x] [long] Set contents of base register

S$x long sets the contents of base register x (x=1,2) to
the value of long . If long is not specified, SDT displays
the current value of the base register and prompts the user
for a new value. Type a <cr> to leave the value unchanged
at this point. S$ (no arguments) prompts the user for
values for both base registers $1 and $2. Note: Base
register $0 is a special absolute register. It always
contains 0 and may not be modified. See discussion under $
command.

>S$1 FF (Set base register $1 to O00000FF)

>p$ (Display all base registers)

$0: 00000000 00000OFF 00200000

>5%2 (Set base register $2)

$2: 00200000: 5555 (Set to 5555)

>S$ (Set both base registers)

$1: O0C000FF: 100 (set $1 to 100)

$2: 00005555: (Type <cr> to leave value unchanged)

>

50 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>$[x] Set standard base register

$x sets base register x (x=0,1,2) as the standard base
register. The standard base register is added to any
address input which does not have a base register specified.
SDT commands display a physical address and an offset from
the standard base register if one is active. If no x is
specified after the $ command, the standard base register
is disabled. To keep the standard register from being added
to an address, type $0+addr to specify an absolute address
($0 is permanently defined as zero).

The current standard base register is displayed with the
command line prompt as follows:

$1> (31 is the current standard base register)
$2> (82 is the current standard base register)
> (no standard base register)

>0$ (Display all base registers)
$0: 00000000 00000100 00005555

>$1 (Set $1 as standard base register)
$1>AD 352,#1 (Disassemble 1 instruction at 352+100)
00000452 00000352: ADDI.B HOE,D3

$1>AD $0+452,#1 (Disassemble 1 instruction at absotute)
00000452: ADDI.B #0E,D3 (location 452)

$1>DM $2+1,#2 (Display 2 bytes at $5555+1)

00005556 00000001: 7468 th

$1>%2 i (Set $2 as standard base register)
$2>pM 1,#2 (Display 2 bytes at 5555+1)

00005556 00000001: 7468 th

$2>% (Disable standard base register)

>

ASSEMBLFR AND SDT MANUAL 51

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>AR longl ,long2 Arithmetic computation

AR computes 5 arithmetic results from the two arguments
longl and long2:

(longl+long2) (longl-long2) (longl*long2)
(longl/long2) (remainder longl/long2)

where (longl*long2) is a 16 bit by 16 bit multiply,
(longl/long2) is a 32 bit by 16 bit divide.

>AR 4CO0,F7FE

+: D00143FE ~: FFFF5402 *: 499F6800 /: 0000 rem: 4CO0

Note that AR can be used to convert a decimal value to hex
by typing a zero for one of the arguments:

>AR /9652,0 (Display hex value of 9652)
+: 00002584 -: 00002584 *: 00000000 (Division by zero not computed)

52 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Displaying 68000 registers

>DR Display all 68000 registers
This command displays the contents of all 8 address
registers, all 8 data registers, the Program Counter, the
User Stack, and the Status Register (see DS command for
further information on the SR display).

>bR

A0: 00011856 00000070 00001238 00010400 0001286C 000104€8 00000400 0007p782
p0: 00000000 000000E4 00000000 00010000 00010001 00000002 00000000 00000000
PC: OOO7E8AE US: O0OOEDDE SR: 2000 (S)

>DA[x] Display 68000 address register

DAx displays the contents of address register Ax (x=0-7).
If no x is specified, all 8 address registers are displayed.

>DAS (Display address register A5)
A5: 000104C8
>DA (Display all 8 address registers)

AO: 000011856 00000070 00001238 00010400 00012B6C 000104€8 00000400 00070782

>DD[x] Display 68000 data register

DDx displays the contents of data register Dx (x=0-7). If
no x is specified, all 8 data registers are displayed.

>DD3 (Display data register D3)
D3: 00010000
>DD (Display all 8 data registers)

DO: 00000000 000000E4 00000000 00010000 00010001 00000002 00000000 00000000

ASSEMBLER AND SDT MANUAL 53

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>DP Display 68000 Program Counter

DP displays the current value of the Program Counter along
with an offset from the standard base register if one is
active.

$1>DP ($1 = 100)
PC: 0007E8AE ($1: OCO7E7AE)

>DU Display User Stack pointer

DU displays the current value of the User Stack pointer.

>by
US: OODOEPDE

>DS Display 68000 Status Register

DS displays the current value of the 68000 Status Register
along with a mnemonic aid to help the user determine which
flags are set. Within the parentheses that follow the
hexadecimal value of the SR, the presence of the following
letters indicate that the corresponding flag is set:

~ Trace mode

— Supervisor mode
-~ Extend bit
Negative flag

- Zero flag

~ Overflow flag

- Carry bit

Q<NZpn-3
|

>DS
SR: 2000 ¢ s) (Supervisor mode set; all other flags clear)

54 ASSEMBI.ER. AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Modifying 68000 registers

A basic format has been established for all substitute
commands. If you wish to modify a single register, you may
do so by specifying the register and the new value in a
single line:

>SA5 6200 (Set register A5 to 6200)

Values may be hexadecimal long values (up to 8 hex digits),
decimal values (preceded by "/"), or ASCII strings (up to 4
characters delimited by single quotes). If you do not
specify a value in the command line, the current value of
the register will bhe displayed, and you will be prompted for
a new value. At this point, you may enter a new value or
simply type <cr> to leave the contents unchanged:

>SAS
A5: 000104c8: 6200 (Set register A5 to 6200)

If you do not specify a register number, you will be

prompted for values for each register of the type you
indicated:

>SA

AQ: 00011B56: 250 (Set AD to 250)

A1: 00000p70: (<cr> to leave A1 unchanged)
A2: 00001238: (<cr> to leave A2 unchanged)
A3: 00010400: (<cr> to leave A3 unchanged)
A4: 00012B6C: (<cr> to leave A4 unchanged)
- AS: 000104c8: 6200 (Set A5 to 6200)

A6: 00000400: (<cr> to Leave A6 unchanged)
A7: 0007D782: (<cr> to leave A7 unchanged)

ASSFMBLER AND SDT MANUAL 55

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>SR

Modify all 68000 registers

SR prompts the user for a value
Enter a new value or <cr> to leave

>SR

AO: 00011856:
A1: 00000070:
A2: 00001238:
A3: 00010400:
A4: 00012B6C:
A5: 000104C8:
Aé: 00000400:
A7: 0007D782:
p0: 00000000:
D1: 000000E4:
D2: 00000000:
D3: 00010000:
D4: 00010001:
D5: 00000002:
D6: 00000000:
p7: 00000000:
PC: OOO7EBAE:
US: O0OCEDDE:
SR: 2000 (s
>

(Set AQ to 250)

(<cr> to leave A1
(Kcr> to leave A2
(<cr> to lLeave A3
(Kcr> to leave A4
(Set A5 to 6200)

(Xcr> to leave A6
(<cr> to leave A7

250
6200
1234 (Set
A' (Set
'BC' (Set
'DEF' (Set
'GHIJ' (Set
/10 (Set
(<cr>
(<cr>
(Ker>
(<cr>
15 (<cr>

See previous
following commands.

e}
D1
b2
D3
D&
D5
to
to
to
to
to

for each 68000 register.
the contents unchanged:

unchanged)
unchanged)
unchanged)
unchanged)

unchanged)
unchanged)

to 00001234)
to 00000041)
to 00004243)
to 00444546)
to 47484948)
to 0000000A)

Leave
Leave
leave
Leave
leave

D6
D7
PC
us
SR

unchanged)
unchanged)
unchanged)
unchanged)
unchanged)

page for a description of the format of the

>SA[x] [long] Set 68000 address register

>SD[x] [long] Set 68000 data register

>SP [long] Set 68000 Program Counter
>SU [long] Set User Stack pointer
>SS [long] Set 68000 Status Register

(See DS command for information on SR display.)

56

ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Memory commands

>DM Display memory

DM has several different forms. If no arguments are given,
256 bytes are displayed following the last displayed
location or the last trace or break encountered. Successive
DM commands can be used to step through memory.

Unexpected break point: OO0O7E8AE: 4A38 TST.B 0258

>DM (DM displays memory following break)
0007E8AE: 4A38 0258 67CA 4200 60EA 48E7 4040 5868 J8.XgJB. jHgaaXh
0007E8BE: 0008 5828 0004 6708 61AC 12C0 5381 66F8 ..X(..g.a,.aS.fx

0007E99E: 0000 0249 4238 0258 0838 0002 CO73 6608 ...IB8.X.8..@sf.
line count error, count= 9

The rather odd-looking output at the right of the display is
an ASCII interpretation of the data on the left. The ASCII
interpretation isn't particularly meaningful in this
example, but it is very helpful when locating or decoding
strings of ASCII text in memory. Note that non-printing
characters are output as periods.

If one address is specified in the DM command, 256 bytes
are displayed starting at that address:

>DM $1+8000 (31 = 100)
00008100 00008000: 2074 6869 7320 7472 6170 206F 6363 7572 this trap occur
00008110 00008010: 7320 616E 6420 636F 6E74 726F 6COD 7265 s and control.r
| | . |
| I - |
| ‘-~ address relative to base register ASCII
‘-~ actual memory address

If two addresses are specified, all némory between the two
addresses is displayed. For example, display memory between
8100 and 810A.

>DM 8100,810A
00008100 2074 6869 7320 7472 6170 20 this trap

ASSEMBLER AND SDT MANUAL 57

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

It is also possible to specify a starting address and a byte
count:

>pM 8100,#/11 (Display 11 (decimal) bytes starting at 8100)
00008100 2074 6869 7320 7472 6170 20 this trap

>SM [$x+]addr Set memory at address addr

SM allows the user to enter data directly into the
computer's memory. The format is similar to the format used
to modify registers. The contents of a word (possibly at an
odd address!) are displayed in hexadecimal and ASCII. The
user is then prompted for a new value. Possible responses
are:

{cr> leave contents unchanged, advance to next
memory address
'xx' load one or two ASCII characters into the word

(note that SDT does not allow lower case characters
or a single quote to be loaded in this manner)

/n load n as a decimal value
word load a word (up to 4 hex digits)
>SM 8101
00008101: 7368 th: (<cr> to leave unchanged)
00008103: 6973 is: 'A’ (Set 8103 to 0041)
00008105: 2074 t: 'BC' (Set 8105 to 4243)
00008107: 7261 ra: /10 (set 8107 to 000A)

00008109: 7020 p : 5678 (Set 8109 to 5678)
0000810B: 6F63 oc: . (Period to terminate SHM)
>bM 8101,810C

00008101: 7468 0041 4243 000A 5678 6F63 th.ABC..Vxoc

58 ASSEMBL.ER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>FB [$x+]addr1 [$x+]addr2, byte

n‘111 memory w1th byte
FB fills the range of memory from addrl through addr2 with
the specified byte value.

>F8 1000,1FFF,ES Filling memory... (FilLl memory 1000-1FFF with E5)

>bM 1000,1FFF (display memory 1000-1FFF)
00001000: ESE5 ESE5 ESES ESES ESES ESES ESES ESES eeeeeeceeceeceeeee

Another form of the FB allows you to specify a starting
address and the number of bhytes to fill:

>FB 1000,#/13,1 Filling memory...(Fill 13 bytes with 01 starting at 1000)
>pM 1000,#10 (Display 16 bytes starting at 1000)
00001000: 0101 0101 0101 0101 0101 0101 01E5 ESE5 .uveuuuwnusuns eee

>FW [$x+]addrl, [$x+]addr2, word

Fill memory with word

FW fills the range of memory from addrl through addr2 with
the specified word value.

>FW 1000,1FFF,E5 Filling memory... (Fill memory 1000-1FFF with OOE5)
>bM 1000,1FFF (Display memory 1000-1FFF)
00001000: OOE5 OOE5 OOE5 OOES OOES5S OOES OOE5 OOES .e.e.e.e.e.e.e.e

The second form of the FW allows you to specify a starting
address and the number of bytes (not words!) to fill:

>FW 1000,#5,FEDC Filling memory... (Fi.l.l. S bytes with word FEDC) :
>bM 1000,#/16 (Display 16 bytes starting at 1000)
00001000: FEDC FEDC FEES OOE5 OOE5 OOE5 O0E5 O0ES ././.e.e.e.e.e.e

ASSEMBILER AND SDT MANUAL 59

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

FL fills the range of memory from addrl through addr2 with
the specified long value.
>FL 1000,1FFF,ES Filling memory... (Fill memory 1000-1FFF with O00000ES)

>pM 1000,1FFF (Display memory 1000-1FFF)
00001000: 0000 OOES 0000 OCOES 0000 OOES 0000 COES ...e...e...e...e

The second form of the FL allows you to specify a starting
address and the number of bytes (not long words!) to fill:

>FL 1000,#9,12345678 Filling memory...(Fill 9 bytes starting at 1000)
>DM 1000,#/16 (Display 16 bytes starting at 1000)
00001000: 1234 5678 1234 5678 1200 00E5 0000 O00ES .4Vx.4Vx...e...e

M [$x+]addrl, [$x+]addr2, [$x+]addr3

Move a range of memory

The M command moves the contents of memory from addrl
through addr2 into addresses starting at addr3 .
Overlapping transfers are handled correctly.

>M 1000,2672,2000 Moving memory... (Move memory 1000-2672 to 2000-3672)

Another form of the M command allows you to specify the
number of bytes to be moved:

>M 1000,#/325,2000 Moving memory... (Move 325 bytes from 1000 to 2000)

60 ASSEMBI.FR AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>XB [$x+]addrl,[$x+]addr2,byte, [maskbyte]

Examine (search) memory
The XB command searches memory from addrl through addr2
for the first occurrence of byte . If maskbyte is
specified, each word is ANDed with it before the comparison
is performed. This option allows non-significant bits to be
cleared before the comparison.

When XB finds a match, it prints the address and the long
word at that address. If you wish to continue the search,
you can type a 'C' at this point.

>XB 8220,8260,41 Searching... (Search for an upper-case 'A' = 41H)
Match at 0000822C: 414C2043 -~ Continue search (C = Yes)? C

Match at 00008231: 414E4E45 - Continue search (C = Yes)? C

No Match found

>XB 8220,8260,'A',5F Searching... (Search for an 'A' or 'a")

Match at 0000822C: 414C2043 - Continue search (C = Yes)? C
Match at 00008231: 414E4E45 - Continue search (C = Yes)? C
Match at 00008259: 61756420 - Continue search (C = Yes)? C

Match at O000825E: 61746520 - Continue search (C = Yes)? (<cr> aborts)

>XW [$x+]addrl, [$x+]addr2,word, [maskword]

Examine (search) memory

The XW command searches memory from addrl through addr2
for the first occurrence of word . If maskword is
specified, each word is ANDed with it before the comparison
is performed. This option allows non-significant bits to be
cleared before the comparison.

When XW finds a match, it prints the address and the long
word at that address. If you wish to continue the search,
you can type a 'C' at this point.

>XW 8200,82FF,'SE' Searching... (Search for upper-case 'SE')
Match at 0000820€: 53455453 - Continue search (C = Yes)? C

Match at 00008228: 53455249 - Continue search (C = Yes)? C

No Match found

>XW 8200,82FF,"'SE' ,5SF5F Searching... (Search for 'SE' or 'se')

Match at OO00820E: 53455453 - Continue search (C Yes)? C

Match at 00008228: 53455249 - Continue search (£ = Yes)? C

Match at 0000824C: 73657473 - Continue search (C = Yes)? (<cr> aborts)

ASSEMBLER AND SDT MANUAL 61

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>XL [$x+]addrl,[$x+]addr2,long, [masklong]

Examine (search) memory

The XL command searches memory from addrl through addr2
for the first occurrence of 1long . If masklong is
specified, each longword 1is ANDed with it before the
comparison is performed. This option allows non-significant
bits to be cleared before the comparison.

When XL finds a match, it prints the address and the long
word at that address. If you wish to continue the search,
you can type a 'C' at this point.

(The following command finds strings in 8500-85FF that begin
with ' Th' or ' th')

>XL 8500,85FF,20546800,FF5FFF00 Searching...

Match at 00008556: 20746872 - Continue search (C = Yes)? C

Match at O000856E: 20746865 - Continue search (C = Yes)? C
No Match found

SXM [$x+]paddr1,[$x+]baddr2,[$x+]addr1,[$x+]addr2

Examine memory

The XM command searches memory from addrl through addr2
for the first occurrence of the pattern contained in memory
locations paddrl through paddr2 . No masking is available
for this form of the X command.

When XM finds a match, it prints the address and the long

word at the beginning of the match. If you wish to continue
the search, you can type a 'C' at this point.

62 ASSEMBI.ER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>DM 8548B,8552 (Display memory 8548-8552)
0000854B: 6172 6775 6Dé5 6E74 argument

>XM 8548,8552,8500,85FF Searching... (Search for 'argument')
Match at 0000854B: 61726775 - Continue search (C = Yes)? C

Match at 00008560: 61726775 - Continue search (C = Yes)? C

Match at 0000858F: 61726775 - Continue search (C = Yes)? ¢

No Match found

ASSEMBLER AND SDT MANUAL 63

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Disassemble memory

>AD Disassemble memory
The form of the AD command resembles that of the DM
command. If no arguments are given, AD disassembles 20
instructions starting after the last displayed or
disassembled memory location, or from the last trace or
break address. Successive AD commands may be used to step
through memory.

If one address is specified (AD [$x+]addr), 20
instructions are disassembled starting at that address.

If 2 addresses are specified (AD [$x+]addrl,([$x+]addr2),
memory is disassembled from addrl through addr2 .

The AD command also accepts a starting address followed by
a count which indicates the number of instructions to be
disassembled:

>AD 7E000,#/10 : (Disassemble 10 instructions)
0007E000: MOVE.B 0224,D0
0007E004: MOVE.W 0222,D1
0007E008: BNE 16[0007E0201
0007EQ00A: MOVE.B 021,01
0007e00E: BTST #03,D1
0007e012: BEQ 0400070181
0007E014: BSET #04,00
0007E018: ANDI.W #0007,D1
0007e01C: MOVE.B 30(PC,D1.W),D1
0007E020: MOVE.B 01,003

Note: The AD command will not accept an odd
address as a starting address because the 68000
does not allow instructions to start on odd
addresses.

64 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Breakpoint commands

SDT has two breakpoint registers which allow the user to
pause (break) the execution of a program when the 68000
Program Counter reaches a specified address. At this point,
memory and registers can be inspected and modified, portions
of the program may be disassembled, execution can be
resumed, or tracing (single-stepping) can be initiated.

When SDT implements & breakpoint, it replaces the
instruction at the specified location with a TRAP #15
instruction. When this trap is executed, control returns to
SDT, and it restores the original instruction so that the
location can be properly displayed. These substitutions are
completely transparent to the user, so you will never see
SDT's TRAP instructions in your program unless you enter SDT
abnormally (on an EXCEPTION error, for example). Note that
breakpoints cannot be set in PROM memory .

Anytime an instruction which has been replaced by a TRAP
must be executed, SDT restores the original instruction and
then executes it with the trace bit set. The trace bit
enables SDT to regain control as soon as the instruction is
finished executing. The TRAP is then restored and execution
resumes normally. This process is also entirely transparent
to the user.

Each breakpoint register has an associated '"pass count”
which allows SDT to ignore a breakpoint a number of times
before breaking. This option is particularly useful when a
breakpoint is located inside a loop. Breaking on every
iteration of the loop would become very tedious, especially
if several thousand iterations were required. If you
specify a pass count along with the breakpoint, you can
break on every 10th pass, 100th pass, 7295th pass, etc.

You may implement your own breakpoints manually by inserting
TRAP #15 instructions in your program. When SDT encounters
such a trap, it will realize that it is not one of its own
breakpoints and will inform you that an unexpected

ASSEMBLER AND SDT MANUAL 65

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

breakpoint was encountered:

Unexpected break point: 00002532: 4E4F TRAP #F (Easy way to enter SDT)
>G0 (Continue execution at instr. following TRAP)

66 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>DB[x] Display breakpoint register
DBx displays breakpoint register x (x=0,1). If no x is
specified, both registers are displayed:

>DB (Display user breakpoints)
Breakpoint 0: Inactive (Both breakpoints are inactive)
Breakpoint 1: Inactive

>SB[x] [[$x+]addr], [passcount] Set breakpoint register
The format of the SB command resembles that of other S
commands (see page 44). A '"pass count" (see page 44) may be
specified along with the address of each breakpoint. Pass
counts may be in the range 0-65535 (O-FFFFH). If no pass
count is specified, or the pass count is O or 1, SDT will
break every time it reaches the breakpoint. A "." 1is used
instead of an address to disable a breakpoint.

>SB0 $1+5000 (Set breakpoint 0 to 5100H)
>DB (Display breakpoint registers)
Breakpoint 0: 00005100 (0000,0000)

Breakpoint 1: Inactive | | ’

| ‘=~ passes already made through break
‘~ maximum passes before break

>sB1 2200,/17 (Set brkpt 1 for 17 passes before break)
>SB (Set both registers)

Breakpoint O: 00005100 (0000,0000)>: 1000,FF (255 passes)

Breakpoint 1: 00002200 (0011,0000): (<cr> to leave unchanged)

>SB1 . £ ™." to disablte breakpoint 1)

>SB

Breakpoint 0: 00001000 (OOFF,0000): . ("." to disable breakpoint 0)
Breakpoint 1: Inactive: (<cr> to Leave unchanged)

ASSEMBLER AND SDT MANUAL 67

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>GO [$x+]addr Execute program

GO starts program execution at addr . If addr is not
specified, execution begins at the address specified by the
current Program Counter. (This is handy if you want to
resume normal execution of a program after a breakpoint, a
break caused by the "break" key, or after tracing.) The GO
command terminates tracing (if active) and resets breakpoint
register temporary pass counts. If you wish to preserve the
temporary counts, use the GC command.

Break: 00008006: 702A MOVEQ #2A,D0 (Breakpoint)

>DB (Display breakpoint regs.)
Breakpoint O: 00008006 (00AO,00A0) (Break on 160th pass)
Breakpoint 1: Inactive

>G0 (Resume execution at 8006)

GC [$x+]addr Execute program

GC is the same as GO , except the breakpoint register
temporary pass counts are preserved.

>GC $2+7500

68 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Trace commands

SDT's Trace Mode is invoked using the TB, TR, TN, or TNI
command. When SDT is in Trace Mode, a "T" appears in front
of the standard prompt:

™ {Trace Mode)
T$1> (Trace Mode with standard base reg.)

Any time SDT is in Trace Mode, the next instruction (at the
address specified by the Program Counter) can be traced by
typing <cr> instead of a command. Trace Mode is terminated
with the TE, GO, GC, or GS command.

Important note: All trace commands display
trace information for the instruction that is
about to be executed. A <cr> will execute this
instruction and display information for the next
instruction.

Tracing TRAP instructions

TRAP instructions are treated in a special manner during
tracing. TRAP instructions are used to call special
subroutines that the user normally wishes to ignore during
tracing. If a TRAP #A is encountered, for example, the user
usually wants to continue tracing his program instead of
tracing the instructions within the TRAP servicing routine.
Furthermore, tracing instructions inside an input/output
TRAP can cause very strange things to happen because SDT may
use the same TRAP to perform I/O during its operation.

Therefore, SDT normally treats a TRAP instruction as a
single indivisible instruction during tracing. It does not
enter the TRAP routine and trace the instructions within.
Realizing, however, that there are times when this is
exactly what a user might want to do, SDT provides a method
for tracing or not tracing the interior of TRAPs. The ST
and DT commands allow you to specify which TRAPs you wish
to trace and which you want to ignore.

ASSEMBLER AND SDT MANUAL 69

SAGE DEBUGGING TOOI.
SDT DETAILED DESCRIPTION

>TB [$x+]addr Begin Trace Mode

TB begins Trace Mode at addr or at the address specified by
the Program Counter if no addr is given.

Important note: The instruction which is disassembled and
displayed is about to be executed.

>T8 (Begin Trace Mode)

Trace: O007E87E: 46FC MOVE #2500,5R

T>Trace: 0007£882: 4241 CLR.W D1 (<cr> to execute MOVE instr.)
T>Trace: 0007E884: 1238 MOVE.B 024C,D1 (<cr> to execute CLR instr.)
™

>TR [$x+]addr Begin Trace Mode with register display

TR functions identically to TB except all 68000 registers
are displayed along with the disassembled instruction.
Remember that the displayed instruction has not been
executed yet, and its effects on the 68000 registers will
not be observed until the instruction is executed.

>TR (Begin Trace Mode)

Trace: OOO7EB7E: 46FC MOVE #2500,SR

AO: 00011856 00000p70 00001238 00010400 00012B6C 000104C8 00000400 0007D782
p0: 00000000 00000000 00000000 00010000 00010001 00000002 00003800 DOOOOOOO
PC: 0007e87E US: OOOODEDDE SR: AO04 (TS Z)

T>Trace: 0007E882: 4241 CLR.W D1 (Ker> to execute MOVE instr.)
AO: 00011856 00000p70 00001238 00010400 0001286C 000104C8 00000400 0007D782
p0: 00000000 00000000 00000000 00010000 00010001 00000002 00003800 00000000
PC: 0007E882 US: OOOOEDDE SR: 2500 € S Y

T>Trace: 0007E884: 1238 MOVE.B 024C,D1 (<cr> to execute CLR instr.)
AO: 00011856 00000p70 00001238 00010400 00012B6C 000104C8 00000400 0007p782
D0: 00000000 00000000 00000000 00010000 00010001 00000002 00003800 00000000
PC: 0O007E884 US: OOOOEDDE SR: AS504 (TS z)

™

70 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>IN[x] Trace next x instructions

TNx traces the next x instructions (x in range 0-127 or
O-7FH). If a TR command was given beforehand, the 68000
registers will also be displayed. If TB initiated Trace
Mode, no registers will be displayed. If no x is specified
with TN , one screenful of instructions is traced.

>TB (Initiate trace mode, no reg. display)
Trace: 0007E8B2: 67CA BEQ CACOO07E87E]
T>TNA (Trace next 4 instructions)

Trace: O007EB7E: 46FC MOVE #2500,SR
Trace: 0007E882: 4241 CLR.W D1
Trace: 0007E884: 1238 MOVE.B 024C,D1
Trace: 0007E888: B238 CMP.B 024D,D1
™

>TNI[x] Trace next x instructions, interruptible

TNIx traces the next x instructions like the TN command.
The display produced by TNI may be paused by typing <CTRI-
S> (any character continues), or the trace may be aborted
with <CTRL-C>. Although this is a convenient capability,
note that TNI cannot be used to trace a section of code
which is expecting input from the keyboard. This is because
TNI will grab the input characters before your program can.
Use TN if this situation arises.

>TE Terminate Trace Mode

TE returns SDT to normal mode.

T>TE
> (Prompt indicates normal mode)

ASSEMBLER AND SDT MANUAL 71

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>DT[x] Display TRAP trace status

DTx displays the Trace/No trace status of TRAP x (x=0-FH).
If no x is specified, the status of all TRAPs is displayed.
(See ST command for further information.)

>pT/15 (Display status for TRAP #15.)
TRAP #F No trace

>ST[x] [T,N] Set TRAP trace status
STx sets the TRAP trace status of TRAP x (x= O-FH). If no
X 1s specified, a new status for each TRAP is requested.
Three responses are accepted:

{cr> leave current status unchanged
T trace the interior code of this trap
N do not trace the interior code of this trap

A "T" or "N" may also be specified from the command line:

>STA T (Trace TRAP H#A)

>ST (Set tracing status for each trap)
(Td)race or (N)o trace

TRAP #0 No trace : T (Trace TRAP #0)

TRAP #1 No trace : (<cr> to leave status unchanged)
TRAP #2 No trace : (<cr> to leave status unchanged)
TRAP #3 - No trace : E (<cr> to Leave status unchanged)
TRAP #4 No trace : (<cr> to leave status unchanged)
TRAP #5 No trace : (<er> to leave status unchanged)
TRAP #6 No trace : (<cr> to leave status unchanged)
TRAP #7 No trace : i (<cr> to leave status unchanged)
TRAP #8 No trace : = {(Xcr> to leave status unchanged)
TRAP #9 No trace : (<cr> to leave status unchanged)
TRAP #A Trace : N (bon't trace TRAP #10.)

TRAP #B No trace : . (<cr> to leave status unchanged)
TRAP #C No trace : (<cr> to leave status unchanged)
TRAP #D No trace : (<cr> to leave status unchanged)
TRAP #E No trace : (<cr> to leave status unchanged)
TRAP #F No trace : (<cr> to leave status unchanged)

72 ASSEMBI.ER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>GS [$x+]addr Go Subroutine

The GS command is a handy way to disable tracing during the
execution of a subroutine or a TRAP. Ilet's suppose that you
are tracing a portion of your main program and you come to a
BSR instruction. Let's say that the subroutine which is
about to be called is a long one, and it has already been
thoroughly debugged. Since you know it already works, it
would he pointless to spend half an hour tracing it when you
want to debug your main program. If you type GS , the
entire subroutine will be executed, and SDT will break as
soon as it returns.

GS works on the following instructions:
BSR BRA TRAP JMP JSR Bee DBce

If the instruction at the Program Counter (or addr , if
specified) is NOT one of the above, GS will not attempt to
execute. If it is, an internal SDT breakpoint is set at the
instruction following the transfer instruction. This means
that arguments cannot be passed as data trailing the call.

Break: 000041A8 TRAP #9 (SDT breakpoint)

>TB (Execute TRAP #9)
(TRAP #9 inputs a char., so we type a
character which isn't echoed)

Trace: 000041AA: 6100 BSR 001ECO00041CAT

T>GS (Execute this subroutine)

" Break: O00041AE: 48E7 MOVEM.L #BOCO,-.(A7) (SDT breaks when subroutine is
. . finished executing)’

ASSEMBLER AND SDT MANUAL 73

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Input/Output commands

>LF[x] block, [$x+]addr,bytecount

Load from floppy disk

LF loads data from the floppy disk in drive x (x=0 for left
drive, 1 for right drive, no x defaults to left drive)
starting at logical block block into memory at addr.
Bytecount specifies the number of bytes to load.

>LF1 /26,400,/2300 (Load 2300 bytes from drive 1, block
26, into memory at 400H)

>DM 400,407

00000400: 1028 5820 202p 2020 .(X -

>WF[x] block, [$x+]addr,bytecount

Write to floppy disk

WF writes data to the floppy disk in drive x (x=0 for left
drive, 1 for right drive, no x defaults to left drive)
starting at logical block block from memory at addr.
Bytecount specifies the number of bytes to write.

>WF1 /26,400,/2300 (Write 2300 bytes to drive 1, block
26, from memory at 400H)
Line count error, count= 2

74 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>ER[x] block Exercise floppy read

ERx block continuously reads 4K (8 blocks) from the disk in
floppy drive x (x=0 for left drive, 1 for right drive, no x
defaults to left drive) starting at block block . A period
is displayed for each successful transfer; an X is displayed
for each unsuccessful transfer. Typing any character will
terminate the ER command. ER is used mainly for checking
drive performance.

ERT /900 00 cuveininnnsranecassn (Read blocks 900-907, drive 1)
ER /1275XXXXXXXXXXXXXXX (Read blocks 1275-1282, drive 0)
(Unsuccessful because disk has only
1280 blocks)
>EW[x] block Exercise floppy write

EWx block continuously writes 4K (8 blocks) to the disk in
floppy drive x (x=0 for left drive, 1 for right drive, no x
defaults to left drive) starting at block block . A period
is displayed for each successful transfer; an X is displayed
for each unsuccessful transfer. Typing any character will
terminate the EW command. EW is used mainly for checking
drive performance.

ASSEMBLER AND SDT MANUAL 75

SAGE DEBUGGING TOOL.
SDT DETAILED DESCRIPTION

Port I/0 commands

The following commands provide direct access to I/0 ports.
Although ports can be accessed Jjust 1like normal memory
locations, the substitute memory commands read from an
address (twice) before writing which may be undesirable when
accessing an I/0 device. The PO and PI commands allow a
port to be read or written in one access. These commands do
not verify the existence of a port before accessing it, and
will work on memory as well as ports.

>POB [$x+]addr,byte Output byte data to a port

POB writes byte data byte to the port at address addr .

>POB FFC021,'A’ (Outputs A to port FFC021)
>POB FFC022,10 (Outputs 10H to port FFC022)

>POW [$x+]addr,word Output word data to a port

POW writes the word data word to the port at address addr
(must be on a word boundary).

>POW FFC022,'AB" (Outputs 'AB' to port FFC022)
>POW FFC022,1007 (Outputs 1007H to port FFC022)
>PIB [$x+]addr Input byte data from a port

PIB reads and displays byte data from the port at address
addr .

>PIB FFC021 . (Inputs a data byte from port FFC021)
00FFCO21: 21 i .

76 ASSEMBLLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

>PIW [$x+]addr Input word data from a port

PIW reads and displays word data from the port at address
addr (must be on a word boundary).

>PIW FFC022 (Inputs word data from port FFC022)
00FFC022: 0033

ASSEMBLER AND SDT MANUAL 77

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Set baud rate for remote (modem) serial channel

PS x sets up the baud rate for the remote (modem) serial
channel according to the following values for x:

X Rate:

0 reserved (currently same as 19200 baud)
1 300 baud
2 600 baud
3 1200 baud
4 2400 baud
5 4800 baud
6 9600 baud
7 19200 baud

On startup, the remote serial channel defaults to 9600 baud
with 8 data bits, 1 stop bit, and even parity.

78 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Motorola Object Code Format

Programs and data may be loaded from the Terminal or Modem
serial channels using the LT or LA command. These commands
use the standard Motorola object code format. This format
consists of ASCII characters formed into records (typically

printed

on one line). FEach record starts with the character

'S" and is followed by a record type number, a byte count,
an address, the memory data, and a checksum.

record:
or

S

ccC

aaaaaa
aaaa

dd

Stccaaaadddddddd. . .ddss
Stccaaaaaadddddddd. . .ddss

the ASCII character 'S' which always starts a
record.

type of record (single digit):

0 - is the header record which generally contains
only a program name in the data field. This
record is ignored by the loader routine.

1 - indicates an object code record with a two byte
address field, 'aaaa'.

2 - indicates an object code record with a three
byte address field, 'aaaaaa'.

9 - is a termination record which indicates that
the load is complete.

Hexadecimal byte count of the remaining characters
in the record (address, data, and checksum).

or

is the hexadecimal memory address where the

data which follows is to be loaded. This field is
present for all records but ignored for the type O
(header) and 9 (terminator) records. For type O,
1, or 9 records the address is contained in 4 hex
characters, while for type 2 records the address
is contained in 6 hex characters.

represents a two hex character value for each

ASSEMBLER AND SDT MANUAL 79

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

object code byte. FEach record may contain up to
252 bytes of object code although 32 is typical in
order to allow a paper listing.

ss is the one's complement of the sum of all the
ASCII character bytes from the byte count (including
the byte count) to the end of the data.

Note that at the beginning of each record the loader will
ignore all characters except 'Q' which will cause the loader
to terminate and 'S' which starts the record. This allows a

Carriage Return and Line Feed to terminate each line for
printout.

Examples:

$006000048445218
$10710801F FE4AE728B
$20A010000323¢00035641ED
$9030000FC

LA Load memory from auxiliary (modem) port

>LA (Load data from modem port)

LT Load memory from terminal port

LT 3 g (Load data from terminal port)

80 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOIL
SDT DETAILED DESCRIPTION

@ EXCEPTION ERRORS
When processing an exception error, interrupts are turned
off and the BIOS is disabled, unless the user has re-
directed the error to his own error handling routine. Non
user—intercepted errors have this format:

EXCEPTION: <error type> ‘Error at' <8 digit location>

Note that the location displayed will sometimes point to the
instruction following the instruction that caused the error
due to the way the 68000 increments its program counter.
Error types are defined below.

ASSEMBLER AND SDT MANUAL 81

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Bus Error:

The processor tried to read memory and there was no
response. Memory may not exist. A hardware strapping
option determines what memory is equipped. Additional
information is displayed:

Function:<4 digit word> Access:<8 digit addr> Instr:<4 digit>

Function: Bits 0-2 ..are the state of the processor
function code outputs FCO,FCl and FC2

Bit 3 ..is O for an instruction, 1 for not
an instruction.
Bit 4 ..is O for write, 1 for read.

Access is the address of the attempt.
Instr is the instruction being executed

Address error: The processor attempted to access a word or

long word on an odd address. Additional information is
displayed with this error:

Function:<4 digit word> Access:<8 digit addr> Instr:<4 digit>

Function: Bits 0-2 ..are the state of the processor
function code outputs FCO,FC1 and FC2

Bit 3 ..is O for an instruction, 1 for not
an instruction.
Bit 4 ..is 0 for write, 1 for read.

Access is the address of the attempt.
Instr is the instruction being executed

82 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPTION

Illegal Instruction error: There are 2 unused opcodes
(Axxx & Fxxx) in the 68000 which are currently undefined and
will give this error if an attempt is made to use them.
Also, any undefined instruction format or addressing mode
will cause this error.

Arithmetic error: An attempt was made to divide by zero
or a CHK instruction was executed (user needs to define
vector) or a TRAPV instruction was executed (user needs to
define vector).

Privilege error: User tried an instruction which requires
SUPERVISOR mode.

Reserved TRAP Certain TRAP locations have been reserved by
Motorola for future use and should not be used.(This error
should never occur.)

Unassigned TRAP error: There are 16 trap locations in the
68000, O0-14 of which are normally unassigned by the
Debugger. Trap 15 is used for breakpoints by the Debugger.
Traps 8 to 14 are used by the BIOS.

Unassigned Interrupt error: There are 6 maskable auto-
interrupt vectors. Normally all of them are unassigned by
the debugger.

RAM Parity error: The 7th auto-interrupt vector is non-
maskable and is used for RAM parity error reporting.
Remember when troubleshooting that the Parity chip itself
could be the cause of this error. Note that the location
given 1is where the program was executing and is not
necessarily the location with the parity error.

Unknown error: FEither the program entered the TRAP handler

illegally or the supervisor stack was not set to point to
valid RAM.

ASSEMBLER AND SDT MANUAL 83

LINK INFORMATION FOR THE 68000

VII LINK INFORMATION FOR THE 68000 :

VII.01 WORKING IN ASSEMBLY LANGUAGE :

The following files are useful to the assembly Jlanguage

programmer:

SYSTEM.EDITOR

SYSTEM . ASSMBLER

68000 .OPCODES

68000 .ERRORS

SYSTEM .LINKER

The system editor is used to create
source text of an assembly language
program. The source text is a human-
readable (more or less) text file which
is then translated into a machine-
readable code file using
SYSTEM.ASSMBLER.

This assembler is used to translate the
source text of an assembly program into
a code file.

This file 1is necessary to provide
SYSTEM.ASSMBLER with information about
68000 assembly code (other OPCODE files
enable the Adaptable Assembler to
assemble code for other micro—
processors).

This is an optional file which, if
present, will enable SYSTEM.ASSMBLFR to
print expanded error messages when it
encounters errors in the source text.

The 1linker 1is wused to 1link assembly
lahguage routines with other separately
assembled routines or high-level
programs (examples are shown late in
this section).

ASSEMBLFR AND SDT MANUAL

COMPRESSOR .CODE

LINK INFORMATION FOR THE 68000
WORKING IN ASSEMBIY LANGUAGE

This wutility transforms a code file
generated by SYSTEM.ASSMBILER 1into a
ready-to-run memory image (used to
develop stand-alone or p-System
independent code). OOMPRESSOR removes
the p-System code file overhead and
applies relocation information to the
code. See the PROGRAM DEVELOPMENT
MANUAL for further information.

Sophisticated users who want to write utilities dealing with
assembly code files will find information on code file

formats in the

p—SYSTEM INTERNAL, ARCHITECTURE GUIDE

(available from SAGE).

ASSEMBLER AND SDT MANUAL 85

LINK INFORMATION FOR THE 68000
EXAMPLES

VII.02 EXAMPLES :

Following is a consolidated example of using assembly code
files from a Pascal program. It shows how to create, link
and run an assembly code program. later examples explain
some of the operations used here.

86 ASSEMBLER AND SDT MANUAL

LLINK INFORMATION FOR THE 68000
EXAMPLES

EXAMPLE 1: LINKING ASSEMBLY ROUTINES TO A PROGRAM

First, the Editor is used to create a Pascal program which
references two assembly code procedures (denoted by
EXTERNAL). This program 1is S(aved under the name
MAINPROG.TEXT.

{ This is a sample Pascal program which uses assembly
language procedures for 32 bit addition and subtraction }

PROGRAM MainExamp;

TYPE INT32 = RECORD { befine a 32-bit integer }
H: INTEGER;
L:INTEGER;
END;

VAR Val1,val2,val3: INT32;
PROCEDURE ADD32(VAR Result,Argl,Arg2:INT32); EXTERNAL;
PROCEDURE SUB32(VAR Result,Argl,Arg2:INT32); EXTERNAL;

BEGIN { MainExamp }
Vall.H:=0; vall.L:=-1; { Set up value of 65535 }
val2.H:=0; Val2.L:= 4; { Set up value of 4 >
{ val3 := vall + val2 }
ADD32(Val3, vall, val2);
WRITELN('Addition: High word = ',Val3.H,
' Low word = ',Val3.L);

Val2.H:=0; Val2.L:=-2; { Set up value of 65534 >
{ vall := vat3 - val2 >
suB32(vall,val3,hval2);
WRITELN('Subtraction: High word = ',Vall.H,
' Low word = ',Vall.L);
END.

ASSEMBLER AND SDT MANUAL 87

LINK INFORMATION FOR THE 68000
EXAMPLES

Next, the two assembly procedures are created with the
Editor and S(aved in the file ASMPROGS.TEXT.

88 ASSEMBLER AND SDT MANUAL

LINK INFORMATION FOR THE 68000
EXAMPLES

Now compile the Pascal program.

SCREEN DISPLAYS: YOU TYPE:

Next assemble the 68000 assembly code routines.

SCREEN DISPLAYS: YOU TYPE:

ASSEMBLER AND SDT MANUAL 89

LINK INFORMATION FOR THE 68000

EXAMPLES

Now the assembly routines must be linked to the DPascal
program. Make sure that the specified output file has the
extension '.CODE' or the file will not execute.

SCREEN DISPLAYS:

Main prompt Lline
Linking...
Host file?
Opening RAMDISK:MAINPROG.CODE
Lib file?
Opening RAMDISK:ASMPROGS.CODE
Lib file?
Map file?
Reading MAINEXAM
Reading ADD32
Output file?
Linking MAINEXAM #2
Copying proc ADD32
Copying proc SUB32
Line count error, count= 14

YOU TYPE:

1 - for linking
MAINPROG <CR>
ASMPROGS <CR>

<CR>

<CR>

EXAMPLE .CODE

Now the final 1linked result in EXAMPLE.CODE is ready to

eXecute.

Main prompt Lline
Execute what file?
Addition: High word
Subtraction: High word

1 Low word
0 Low word

90

X - for execute
EXAMPLE

3

5

ASSEMBLER AND SDT MANUAL

LINK INFORMATION FOR THE 68000
STACK AND REGISTER USAGE

VII.03 STACK AND REGISTER USAGE :

Information from the Pascal calling routine to and from the
assembly routine is passed on the User Stack SP=A7. The
first 4 bytes are always the return address. Then the
arguments, always word values, are passed.

PROCEDURE EXAMPLE(argl,arg2..... argN) ;EXTERNAL ;

SP ---=> RET ADDRESS
argN

arg2
argl

When the argument is specified as VAR, the value passed from
Pascal to the assembly routine is a word OFFSET indicating
where the argument 1is in the p-System data area. Register
A6 points to this data area. To calculate the true location
use the INDIRECT ADDRESSING WITH DISPLACEMENTS AND INDEXES
mode:

Affective addr = xx (A6 ,REG.L)
| °~ index for location of variable
°~ points to the p-System data area

°~ byte displacement within the variable

A6 A6 points to the start of the
data
AG6+OFFSET LSTCOUNT is an offset into data
area
AB+OFFSET +xx byte displacement within variable
||

ASSEMBLER AND SDT MANUAL, 91

LINK INFORMATION FOR THE 68000
STACK AND REGISTER USAGE

The OFFSET passed from the Pascal program must not be sign-
extended as it is a positive value from 0-64K. This means
that the high part of the register REG.I. used in the
effective address must be zero. D6 and D7 are provided with
their high 16 bits already zeroed to make it easy to MOVE.W
the OFFSET into the register.

Assembly programs may use the data registers DO-D5 and the
low word of D6 and D7 without saving. The high word of D6
and D7 are zero and must stay zero. Only address registers
AO-A2 may be used without saving the previous values. All
routines are called in USER mode, not Supervisor mode.

92 ASSEMBLER AND SDT MANUAL

68000 EXAMPLES

VIII 68000 EXAMPLES :

Often when writing an assembly code routine, it becomes
necessary to pass the ADDRESS of a Pascal variable through
as an argument, so that the assembly routine and Pascal
routine can both use the variable.

In the Pascal routine, use the VAR specification for the
argument:

PROGRAM TRYEXAMPLE;
VAR SHARE:INTEGER;
PROCEDURE EXAMPLE (VAR WESHARE:INTEGER) ;EXTERNAL;

BEGIN

EXAMPLE (SHARE) ;
END.

In the assembly code routine calculate the addr:

.PROC EXAMPLE 1 ;one argument .
START MOVEA.L (SP)+,AOQ ;Save the return address

MOVEQ #0,00 ;High part of reg should

;be zeroed

MOVE.W (SP)+,D0 ;Get the argument.

LEA 0¢A6,00.L) A1 ;Calculate addr of SHARE

BT ;body of routine

JMP (AQ) ;return to PASCAL

-END

Variables defined as .PUBLIC or .PRIVATE are also word
offsets to the data area just as VAR arguments are.

ASSEMBLER AND SDT MANUAL 93

68000 EXAMPLES

Register D6 and D7 already have their high 16 bits zeroed.
This provides a convenience in that the user does not have
to set up a register himself:

94 ASSEMBLER AND SDT MANUAL

68000 EXAMPLES

EXAMPLE 3:PASSING A STRING TO AN ASSEMBLY ROUTINE.

For a string or byte array parameter which is indicated as
variable (VAR), the Pascal calling routine passes the offset
of the string address to the assembly code routine. In the
example the true address of the string is calculated and the
string is changed. Control returns to the Pascal routine
which prints out the changed string.

Note: If the address is calculated with a zero
displacement (giving the start of the string)
that address contains the LENGTH of the string
not the first character in it.

PROGRAM TRYS;
VAR S:STRING;
PROCEDURE EXAMPLE (VAR S:STRING);EXTERNAL;

BEGIN

s:="! i’.

EXAMPLE (S) ;

WRITELN(' EXAMPLE SAYS:',S);
END.

-RELPROC EXAMPLE ,1 ;one argument

START MOVEA.L (SP)+,AQ ;Save the return address
MOVEQ #0,D0 ;Clear the high part DO
MOVE.W (SP)+,D0 ;Get the argument.

LEA 2(A6,00.L) A1 ;Calculate SC2] addr.
MOVE.B #"H",(A1)+

MOVE.B #"I", (A1)+

JMP (AD) ;return to PASCAL

-END

ASSEMBLER AND SDT MANUAL 95

68000 EXAMPLES

Strings or byte arrays which are passed as Value parameters
(without VAR), must be accessed in a special method using a

Segment Pointer. This process is necessary bhecause the
string may either be in the data area or in the code area
(string constants). The Segment Pointer is passed on the

stack as two words. The first word (top of stack) contains
either O (NIL) or a pointer to a segment environment record.
If the first word is O then the second word is the offset of
the string in the data area and may be accessed as described
above. If the first word is not O then the access is more
complicated because the data is a constant in the code area.
The user must also insure that the segment with the constant
being accessed is resident in the code pool. The following
facts are necessary to track down the constant data.

@ First Word (tos) is a pointer to the EREC in the data
area.

@ Second Word is an offset of the constant into the
segment.

@ The third word of the EREC points to the SIB (Segment
Interface Block) in the data area.

@ The first word of the SIB points to the code pool
descriptor in the data area.

@ The second word of the SIB is the offset of the segment
in the code pool.

@ The first two words of the code pool descriptor are
a long word pointer to the base of the code pool.

96 ASSEMBLER AND SDT MANUAL

68000 EXAMPLES

ASSEMBLER AND SDT MANUAL 97

68000 EXAMPLES

EXAMPLE 4:A RELOCATABLE ASSEMBLY CODE ROUTINE WITH FIXED
PRIVATE AREA.

It is often necessary to set up a data area for an assembly
code routine that keeps values between calls to the routine.
One way to do this is to make the assembly code a ".PROC"
which fixes the entire routine in the heap. This means that
there is less room for user data. By making the routine
relocatable, and putting only the variables in the data
area, the code now resides in the code pool. This is done
with ".RELPROC" and ".PRIVATE".

The value of the label specified in the ".PRIVATE" is a word
offset to the data area just as VAR arguments are.

PROGRAM TRYIT; {simple calling routine}
PROCEDURE EXAMPLE;EXTERNAL;
BEGIN

EXAMPLE;
END.
-RELPROC EXAMPLE ;Relocatable assembly code.
.PRIVATE LSTCOUNT ;Setup storage area on heap.

START MOVE.W #LSTCOUNT,D6

ADDQ.L #4,0(A6,D6.L) ;Increment count by 4

RTS ;Return addr still on stack

-END
NOTE: Variables defined with ".PUBLIC" are
references to data defined in a Pascal program
and must also be accessed as an offset within
the p-System data area via A6.

98 ASSEMBLER AND SDT MANUAL

STAND-ALONE LOADER

IX STAND-ALONE LOADER :

The Stand Alone Assembly Code loader utility provides a
method of loading and starting an assembly language routine
which is independent of the p-System (but not the BIOS).
This loader prompts the user for the code file name, load
address, and starting address. Once this information is
given, the routine disables the hooks in the BIOS to the
interpreter and sets up the BIOS call to load and start the
assembly code. The assembly code may overwrite the p-System
data, code, and interpreter but must preserve the BIOS.
Once the assembly code is loaded it could disable interrupts
and overwrite the BIOS area if necessary.

The LOADASM program is used to load and start a stand alone
assembly code program. The assembly code program must be
Linked and Compressed to form a file which contains only an
image of the assembly code with no header or relocation
information.

The LOADASM program will query the user for the file name

containing the assembly code. The program will
automatically append the '.OODE' suffix if not inhibited
with a trailing period. A carriage return here will

terminate the program.

The program then asks for the Target memory location for the
start of the code file in hexadecimal. A carriage return
will default to the typical location 400H. Note that the
complete code file is loaded including the remainder of the
last 512 byte block past the end of the assembled code.

The program will ask for the Code startup address in
hexadecimal. A carriage return here will default the
startup address to 400H. Finally the program will query,
"Ready to load:" and the user should reply with a Y to
initiate the loading and starting of the assembly code
program. Any other character will abort the process with a
"Program aborted”" message.

ASSEMBLER AND SDT MANUAL 99

STAND-ALONE LOADER

The load and startup parameters are moved by the BIOS onto
the System stack. The original p-System program and

interpreter may be overwritten by the new assembly code A\
program. Note that the BIOS may return to the calling
program if an error occurs while loading the assembly code
file. This may cause a system crash if a portion of the p-
System has already been overwritten before the error. If
not, a "Load failed" message will be displayed.
Note that a command file might be useful to set up the
consistent execution of a stand alone assembly code program.
Such a file (LOADCMD.TEXT) might look like:

KILOADASM

CODEFILE

1000

1000

Y
To start the routine type in X I=LOADCMD.
The IOADASM.CODE file contains the SIO Unit from the SAGE ‘“\
Toolkit and the FILE INFO Unit from the p-System
distribution.

100 ASSEMBLER AND SDT MANUAL

APPENDIX A:
EXCEPTION ERRORS

APPENDIX A: EXCEPTION ERRORS

When processing an exception error, interrupts are turned
off and the BIOS is disabled, unless the user has re-
directed the error to his own error handling routine. Non
user-intercepted errors have this format:

EXCEPTION: <error type> 'Error at' <8 digit location>

Note that the location displayed will sometimes point to the
instruction following the instruction that caused the error
due to the way the 68000 increments its program counter.
Error types are defined below.

Bus Error: The processor tried to read memory and there
was no response. Memory may not exist. A hardware
strapping option determines what memory is equipped.
Additional information is displayed:

Function:<4 digit word> Access:<8 digit addr> Instr:<4 digit>

Function: Bits 0-2 ..are the state of the processor
function code outputs FCO,FC1 and

FC2

Bit 3 ..is O for an instruction, 1 for not
an instruction.

Bit 4 ..is O for write, 1 for read.

Access is the address of the attempt.
Instr is the instruction being executed

ASSEMBLER AND SDT MANUAIL 101

APPENDIX A:
EXCEPTION ERRORS

Address error: The processor attempted to access a word or
long word on an odd address. Additional information is
displayed with this error:

Function:<4 digit word> Access:<8 digit addr> Instr:<4 digit>

Function: Bits 0-2 ..are the state of the processor
function code outputs FCO,FC1l and

FC2

Bit 3 ..is O for an instruction, 1 for not
an instruction.

Bit 4 ,.is 0 for write, 1 for read.

Access is the address of the attempt.
Instr is the instruction being executed

Illegal Imstruction error: There are 2 unused opcodes
(Axxx & Fxxx) in the 68000 which are currently undefined and
will give this error if an attempt is made to use them.
Also, any undefined instruction format or addressing mode
will cause this error.

Arithmetic error: An attempt was made to divide by zero
or a CHK instruction was executed (user needs to define
vector) or a TRAPV instruction was executed (user needs to
define vector).

Privilege error: User tried an instruction which requires
SUPERVISOR mode.

Reserved TRAP Certain TRAP locations have been reserved by
Motorola for future use and should not be used.(This error
should never occur.)

Unassigned TRAP error: There are 16 trap locations in the
68000, 0-14 of which are normally unassigned by the
Debugger. Trap 15 is used for breakpoints by the Debugger.
Traps 8 to 14 are used hy the BIOS.

102 ASSEMBL.ER AND SDT MANUAL

APPENDIX A:
EXCEPTION ERRORS

Unassigned Interrupt error: There are 6 auto-interrupt
vectors. Normally all of them are unassigned by the
debugger.

RAM Parity error: The 7th auto-interrupt vector is non-
maskable and is used for RAM parity error reporting.
Remember when troubleshooting that the Parity chip itself
could he the cause of this error. Note that the location
given 1s where the program was executing and 1is not
necessarily the location with the error.

Unknown error: Either the program entered the TRAP handler

illegally or the supervisor stack was not set to point to
valid RAM.

ASSEMBLLER AND SDT MANUAL 103

APPENDIX B:

FLOPPY DISK BOOT ERRORS

Not BOOT disk

APPENDIX B: FLOPPY DISK BOOT ERRORS

Boot aborted on drive 0
Drive error (code) on drive (0 or 1)

104

01
02
03
04
05
06
07
08
09
0A
OB

- controller failure

- invalid command

- recalibrate or seek failure
- timeout

- missing address mark
- no data found

~ overrun

— CRC error

— end-of cylinder

- unknown

~ address out-of-range

ASSFMBLER AND SDT MANUAL

01
03
04
08
OB
oc
OE

APPENDIX C:
WINCHESTER DRIVE ERRORS

APPENDIX C: WINCHESTER DRIVE ERRORS (while booting)

Could not initialize VCO.
Recalibrate/seek failure.
Drive not ready.

CRC error.

Address out of range.
Wrong cylinder.

Bad device number.

ASSEMBLLER AND SDT MANUAL

105

APPENDIX D:
PROM ROUTINE ENTRY POINTS

APPENDIX D: PROM ROUTINE ENTRY POINTS

KEYBCH.... Get a Keyboard Characterloc=FEOOCO8H

KEYCHK.... Check for a Keyboard Characterloc=FEOOOCH
TERMCHAR.. Printout a Character to Terminal ..loc=FEO014H
TERMTEXT.. Printout a Text String e o+ 10c=FEOO18H
TERMCRLF.. Print a Carriage Return/Line Feed ..Joc=FEOO1CH
TERMHEXB.. Printout a Hexadecimal Byte loc=FEOO20H
TERMHEXW.. Printout a Hexadecimal Word loc=FE0024H
FDREAD.... Floppy Disk Read ..ieeveneens « e o000 1l0C=FEO028H
FDWRITE... Floppy Disk write ...cceeieveenvenn loc=FEOO2CH
BOOTSX.... Floppy disk boot o 80 ie e e a e i e e an a8 Toc=FEOO38H
WSELECT... Winchester Select ...i.cievernncens loc=FEOO40H
RDCHANS... Read Winchester channel 9l1loc=FEQOO3CH
DEBUG..... Debugger Entry Pointi0veeeees 1oc=FEOO30H

MACROS USED WITH PROM ROUTINE ENTRY POINTS:

ILONG JSR MACRO:

MACRO LJSR
.WORD 4EBSH
.WORD OOFEH
JWORD %1
. ENDM

LONG JMP MACRO:
MACRO LJMP
.WORD 4FF9H
.WORD OOFEH
LWORD %1
. ENDM

NOTE: These routines must be called in 68000 SUPERVISOR mode.

106 ASSEMBL.ER AND SDT MANUAL

APPENDIX E

DEBUGGER COMMANDS

APPENDIX E: DEBUGGER COMMANDS

Page

PADssssmsnsnsnsnnssnansnspesassn 64
Disassemble 20 instructions
from current display loc.

PAD [$x+]addreeeeereereeencannns 64
Disassemble 20 instructions
starting at addr

>AD [$x+]addrl, [$x+]addr2....... 64
Disassemble instructions
from addrl through addr2

PAD [$x+]addr,#eeeeeceees teeeee 04
Disassemble n instructions
starting at addr

JAR. 1oNEL ,1ONE2 s v s 600 sinss s ssuw D2
Arithmetic computation

>DAlx]..ne.. oo 0w o SBEEED isaaem O3
Display A reglsters or Ax

SDBIX] s s somawoneneensiosessens son BT
Dlsplay breakp01nt regs.
or breakpoint register x

PDD[X]eeenene 3 arece m mew ayenein S B8 0 53
Display D registers or Dx

PMassiaseainnes 5k e e 57

Display 256 bytes of memory
from current display loc.

ASSEMBLER AND SDT MANUAILL

107

APPENDIX E

DEBUGGER COMMANDS

108

>IM [$x+]addr..... B g g e o m s mne ca o
Display 256 bytes of memory
starting at addr

>DM [$x+]addrl, [$x+]addr2.......
Display memory from
addrl through addr2

PDM [$x+]addr, M.ieeeiieeneacess
Display n of memory
starting at addr

PP a0 o v w5 05w 5 10 6 01 1w in 01w e 8 e e 6 8
Display program counter

Dlsplay statug register

SOT[X]ssssssnwsasnase SieiE 6 9 B Brdie & 6
Display current trace mode
for all traps or trap x

Display user stack p01nter

IDB[K] eismmsiiivosisvossions .
Display base regs. or $x

YER[X s swnusnomwasnswnvmssnasses
Exercise floppy read

SEWIxFeovens o e T W S
Exercise floppy write

>FB [$x+]addrl,[$x+]addr2, byte.

Fill memory addrl through
addr2 with byte

ASSEMBLER

57

57

57

54

53

54

72

75

75

AND SDT MANUAL

APPENDIX E
DEBUGGFR COMMANDS

>FB [$x+]addr, #n, byte......... 59
Fill memory with n bytes
of byte starting at addr

>FL, [$x+]addrl,[$x+]addr2, long. 60
Fill memory addrl through
addr2 with data long

>FL [$x+]addr, #n, long.....ee.. 60

Fill memory with n long
words of long starting
at addr

SFW [$x+]addrl,[$x+]addr2, word. 59
Fill memory addrl through
addr?2 with data word

>FW [$x+]addr, #n, word......... 59
Fill memory with n words of
word starting at addr

GC [[$xt+]addr]eeeeeeeenenevnnns 68
Execute program at PC or addr
if specified

GO [[$x+]addr]svisesovssnsnssss 63
Execute program, resetting
breakpoint counts

GS [[$x+]addr]eeeeeeneeeeneanns 73
Fxecute subroutine call at
PC or addr
DTF[X]eeeneerenaeeanaaanennanans 47

Boot from floppy drive O or x
(O=left drive, l=right)

PIFR[X Janwwaannsnssnnansmuvoinns 48

Boot from floppy drive O or x
without loading RAMDISK

ASSEFMBLER AND SDT MANUAL 109

APPENDIX E
DEBUGGER COMMANDS

>IH[x] [#n,name]..... ceseeenenan 48
Boot from hard disk O or x

>IHR[x] [#n,name]l....ccveunen.. 49
Boot from hard disk without
loading RAMDISK

Load from a remote device
(Motorola format)

>LF[x] block,[$x+]addr,count.... 74
Load count bytes into
addr from block # block
of floppy drive O or x

PTG 5050 100 w50 000 6 67 5 15 0 6 0 0000 08 0 50 906 0 80
Load from the terminal
(Motorola format)

M [$x+]addrl, [$x+]addr2,
[$x+]addr3...... 60
Move data from addrl
through addr2 to addr3

M [$x+]addrl,#n,[$x+]addr2..... 60
Move n bytes from addrl
to addr2

>POB [$x+]addr,byte..ceeeceenens 76

Output data byte to port

>POW [Bx+]addr,word.....c.ceeeenn 76
Output data word to port

YPIB [Bxt]addr:svssssasssns oo s 76
Input data byte from port

110 ASSHMBLER AND SDT MANUAL

APPENDIX E
DEBUGGER COMMANDS

DPIW [Pr+]addreees ssensnsvons e 77
Input data word from port

PPS Xuwsosinevossnsoes 3o 06 6 S 78
Set remote baud rate

DSA[x] [longlesinciciinsvosssnos 56
Modify A registers or Ax

>SB[x] [[$x+]addr], [passcount]... 67
Set breakpoint regs or Bx

>SD[x] [longleceeesnnss 5 are 8w 056 56
Modify D registers or Dx

PM [Bx+]addree.eeeeeee. cerenean 58
Modify memory

PSP [1ongleeeeerenenenns S T 56
Modify Program counter

PORewsnssvsinsvssnnavaia ssvisisn DO
Modify all registers

S8 [longl.snsssssnassen wieswn DB
Modify Status Reglster

PBTLET [T N asosoennsans e 72
Set Traps for Tracing

>SU [1ongleeeveeeneenense ceseess DB
Modify User Stack pointer

>SB[x] [1ongleeeeeeeesannn P (¢
Modify base regs. or $x

>TB [[$x+]addr]eeeeeeees. soenian 10O

Trace without reg. print
starting at PC or addr

ASSEMBILFR AND SDT MANUAL 111

APPENDIX E
DEBUGGER COMMANDS

PTBie o s w6 ss 0 5 8 0080 '8 . o7
Terminate trace mode
DTN[X]eeeeaeanesacnaosnonnnas ees T1
Trace next x instructions
DTNI[X]eeveeenennn cresesecnanans 71
TR [[$x+]addr]...ceeee.. swwsase TG

>WF[x] block,[$x+]addr,bytecount 74
Write count bytes from
addr to block # block
of floppy drive O or x

>XB[$x+]addrl, [$x+]addr2, 61
byte, [maskbytel......
Search memory addrl through
addr2 for byte after
masking with maskbyte

>XW[$x+]addrl, [$x+]addr2,
word, [maskword]...... 61
Search memory addrl through
addr2 for word after
masking with maskword
masking with masklong

>XL[$x+]addrl, [$x+]addr2,
long , [masklongJl...... 62
Search memory addrl through
addr2 for long after

>XM[$x+]paddrl, [$x+]paddr2,
[$x+]addrl, [$x+]addr2. ...
Search memory addrl through
addr2 for pattern in memory
paddrl through paddr2

112 ASSFMBILER AND SDT MANUAL

APPENDIX E
DEBUGGER COMMANDS

{CR> Trace next instruction
(active only when SDT is in
Trace Mode)

ASSEMBLFER AND SDT MANUAL 113

N

INDEX
-$-

3

—A-

£ . s s . B4
AdAreSS EITOIrS . o ¢ ¢ o o s e o s ¢ » s 0 0 s s s s s s o s s » « 81, 101
Address of a Pascal Variable. . ¢ ¢ ¢« ¢ ¢ ¢« ¢ 6 o s e s e a oo .93
Arithmetic errors. « ¢ ¢ « ¢« ¢ ¢« e s o s e s e e s oses...83, 102
ASSEMDIEr . & ¢ ¢ 4 o 4 s s e ¢ s 6 e e s s essseasssssssass 84

1inKage. o « ¢ o o e v 0 e ettt e s s e s e s s seeeees 93
Auxillary serial channelsS. . .« ¢ ¢ ¢ ¢« ¢ e ¢ s s o o 0 0 0o 0o 12

-B -

BAD MEMOTY MSE e ¢ o ¢« ¢ ¢ o o ¢ o 0 6 6 s v oo casooesesssss?l
DASETE s o ¢ ¢ o ¢ o o 6 6 6 s 060660855 00aesooecsssssaldd
Boot

switch settings. « « ¢ ¢« ¢ ¢ ¢ ¢ ¢ 6o e o 0 v esooesoeeasdl
BOOTER.OODE . ¢ + « 4 o ¢ ¢ 6o ¢ 0o oo e s oeeesasseess 25, 27
BOOLSEIap . « ¢ o o o o e e e oo s s o s oo eceossonsosssa 23

Header. « « « o o o o 6 ¢ o 0 0 e s e s 20600 oseseesosss2d
BOOTSX . ¢ ¢ o ¢ o e v o e oo s v ossansseesassnse cese. 34
Break points, Debugger. « « « « o ¢ ¢« ¢ ¢ s s e o 0o e e s oo o037
BUS ©ITOT . « ¢ ¢ ¢ c o o s s ¢ s e s s s s s s s ssssoeasss8l, 101
Bypassed INit. .« « o ¢ ¢ ¢ et o o e o oo e oo o nsooooecaes B2

-C-

COMPIESSOT « o o o o o o o6 6 6 6 6 6 0 o s oo s oo s s s es e .84
-D-

. >0
) -
) Y4

) 1

Debugger
Callinge o o s ¢ o o o e s s s s v oo e oososesasaeseses 37
EXamMPleS. « ¢ o ¢ ¢ o o o e o afo o6 0o ooeoesecasees 47
Quick description. . « ¢ « « e ¢ e 0t et s et s ra s 39
Register USAZE . ¢ o « ¢ ¢« o o ¢ 0 6 6 6 0 s aaeveeesaaas 38
SAGE Debugging TOOL. « « « « ¢ ¢ ¢ o 6 6 s s a0 oo 0000 e 47

114 ASSEMBLER AND SDT MANUAL

[

INDEX

Dip SWAitChe v v v o v oo v vt e ssooeennenennssa.lO
DISABLING THE MEMORY TEST . « v o o e v o v o oo oo oo onaass22

. P 14

DP.

DRe o v o oo tesoenaessensenseeenensenneeessb3
< 0SSO 71
DT v vt et e teeeseennneennsens N
51 R 1

Errors
AAAreSS . ¢ o o o ¢ e s e s s e e v e e s e s 8l 101
arithmetic. . « « ¢ ¢ ¢ v et 6t e e o eo o ssees-s.. 83, 102
bUS. ¢ v vttt i et i ittt e s s e e 81,101
EXCEPLIOoN. ¢ ¢ v o s s v e o s s e avessasssesssa 81, 101
illegal instruction., e e+ 83, 102
Privilege. « « « ¢ ¢ s ¢ ¢ 6 ¢ 0 e s s s e e s s es e e 83,102
RAM Parity. « « o o ¢ ¢ o0 e 0 e v e e v v e e es s s 83, 102
Unassigned Interrupt. «see.. 83,102
Unassigned TRAP. . ¢ v v v ¢ o ¢ e 0 0 e e avweessse 83, 102
UNKNOWI s 4 ¢ o « o o o o o 6 s s 0 s 0 aeeoasoassss83, 102
EW . o e e e e et ot e ot oo oo oo BN b
Exception errors. . « « « v ¢ s s s e s s s s s s 0.0 81, 101
FEXTERNAL ProcedUIreS. ¢ ¢ « o o o e e e o s s s s s s o0 s o 0ss 84
—F-

2 . 59

FDREAD. v o v o ¢ s 0 ¢ o 00000 ososasssessseeeaededd, 33
Floppy disk
DOOL e ¢ 4 ¢ o o s oo s s s s s nsosnesesnssesass 17, 24
Control. ¢ v v o v oo o e s s o s s s sassssesesesess 10
CONErol POrte ¢ ¢« ¢ o ¢ ¢ o s o e e s s e aesseesessessll
Status Pport. . « ¢ ¢ ¢« ¢« ¢t ¢ st e s s s e eeeesss 10
FLOPPY FORMAT ¢ & ¢ + o v s ¢ s s s e s s s sassoesessoessses 26

FW . ot i ettt ettt s eeesosenoeassssseosnosess D9

ASSFMBLER AND SDT MANUAL 115

INDEX

-G -

GC..0..................................68
GO.......ll.l.l'..l..ll...l.l..l....l..68
GROUP-A SWitCheS . o ¢ ¢« ¢ o c ¢ o 0o ¢ 0 0 s o s s s s o oeseeaesslT

GS ' o ittt ettt soossastossasosossonsosceeasdd
-1
IEEE"488...Q.U.....ooio..o.ooo..oooo.o..olo

1 . Y¢

c e e.. 48
IFX boot cOMMANA . « ¢ ¢ o ¢ ¢ ¢ ¢ ¢ 0 ¢ 6 e 0 0 0 s o oeoeessssesld

IH ® S & & 0 & B S S S 0 4 9 0 0 4 et S " 0t s e e 0 e 0 e o o o 48

IF‘R. e & ® & 0 4 4 & & 9 " b 0o ® 8 & & 5 o o & B o s s s e 0

1 | -

THXx boot command. « o o o « ¢ ¢« s ¢ s o o s s s s s s s aseoaoaosaslB
Tllegal instruction €rrors. « « « « ¢ o+ o ¢ o s ¢ o0 ¢ ¢« 83, 102
Indirect addressing. « « « v ¢ v ¢ ¢t ¢ ¢ ¢ s 60 e et e ceseee.Bb
Interrupt

AriverS.e ¢« o ¢ ¢ ¢ o o o 0 s e s v s 000 0 0esssseseeses 17
1/0 Ports

(BeNEral) e v v ¢ v s ¢ o o s v st s s s s s o e nesessse
I/OPorts (specific). « ¢ ¢t v vt v et v o v v v v o v o

IS.....o.oiiooo.o...o.ooou....i.lo.

-K-

Keyboard, read. . « « « ¢ ¢ ¢ ¢ ¢ o e oo s e s oo oassecesess 3L
-L-

ees 9
... 10
... 47

Link
ASSEMDIY ¢ 4 ¢ ¢ ¢ ¢ 4 ¢ 6 0 e e s s e e cer s e eses 93
Tegister USE. ¢ v ¢ c ¢ ¢ s e et e s s e e e easaccecesesD2
68000 SPeCifiCS.e o ¢ o o o ¢ ¢ 6 e 0 e e e cseoecsecess 84
Linkeriiiccll.llct.ll..l.l“l...lllll.l.84

LT ® ® 8 & ¢ 0o 4 6 5 0 b 0 s o+ ® 8 6 & & & 0 5 0 8 & 4 0 4 4 S b 8 s 0 4 @ 80

116 ASSEMBLER AND SDT MANUAL

Memory test. o o o o o o o oo 00t s a e s o noesenoeeaseassll

disable. « c ¢ o o s 6 b st 0 s e et ettt e e e. 22

Motorola Object code. « ¢« ¢ o ¢ ¢ ¢ ¢ ¢ ¢ s s s 00 s s oo oseesldD
-0-

Object code, Motorola. . « ¢ + ¢ ¢ ¢t v e e v et e v oo osese 19
-P-

Parity, €rrorsS. o o ¢ o ¢ ¢ ¢ o ¢ ¢ e o e s s 00000000 .83, 102
Polled AriverSe o ¢ o ¢ o ¢ ¢ s e s s 0 a o s s o s nsewvesseeesl?

o e o e V4

Printer POrt. « ¢ c ¢+ + ¢ s e e s s e o coeseseaassaesslD 11
PRIVATE BY€BS e ¢ ¢ » ¢ ¢ o o 6 6 6 6 6 s 00 ceveseoceeesasIB
Privilege errors. . « v « « ¢« e ¢ ¢ s e s s oo = s+ 2a+44. 83, 102
PROM . ¢ ¢ ¢ c o ¢ e e o o e o s s o s oesvosssessansecsas 8
address switching. . ¢ « ¢ ¢ ¢ e e o s s s e o oo o0 oeees 17
eNtry pointS. « « o o ¢ o ¢ e s s s 0 s s e e s s e e ees 30
Error Handling. « « « « « c ¢ s ¢ o 2 e o s ¢ oo o s 00 ssea 15
Initialization and Bootstrap Routines........... 15
I/OSubroutines. . ¢« « o ¢ ¢ v e v s t e s s s eoeseeoesess 15
SAGE Startup Test. « « v ¢ v ¢ ¢ ¢ ¢ ¢ e e e s s eesseseee 1D
The SAGE Debugging Tool. « + ¢« ¢ ¢ ¢ e s ¢ ¢ ¢ e e a0 0 saas 1D
p-System, Floppy bootsStrap. « « ¢+ ¢ e ¢ e ¢ s s e 0 e aseeeoe. 24
p-System, Winchester boot. « « « ¢ ¢ ¢ ¢ ¢ttt et et s s 0 oo 26
-R -

memory test. . ¢ ¢« ¢ ¢ i ittt e e s e R |
PATity @rror. « v « o ¢ ¢ o e e s o s s s e e ssseees- 83 103
RAM SIZE =XXXX. v ¢ ¢ ¢ ¢ s ¢ 0 s s s s s seoessosasoseeesedl
Real Time ClOCK . ¢ v « o o ¢ ¢ s e s s s s s o oo ssoeasoesss 10
REZIiSTErS.: ¢ ¢« ¢ e ¢ ¢ e o s 0 o e e o s e s osseovesessecses 38
Registers, 68000. ¢ ¢ ¢ v o s ¢ ¢ s 0 0 0 s s e s s eossaeesss 92

ASSEMBLFR AND SDT MANUAL 117

INDEX

68000, registers. « « o ¢ ¢ ¢t o s s s 0o s e s s s s s 0 s e e s s 92
Relocatable Code. v« ¢ o o o ¢ ¢ o s o 0 0 e e o v o aevseosesessIB

Reserved TRAP. ¢ ¢ ¢ o o o ¢ 5 6 s 0 0606 06 06 06 a asasesecese

-8-

83, 102

1 s 0

SAGE Debugging TOOLl. v ¢ ¢ ¢ o ¢ « ¢ o ¢ s a s s a s o oo aosovocs

SAGE IV STARTUP TEST . o ¢ o s o ¢ ¢ ¢ o e 0 6o 0 o s osoeeseoa
SAGE.PBOOT.TEXT.

SAGE .WBOOT.CODE . « « . . .

sageprms ® & 6 & & & @ ° 8 ° 0@

SAGE .WBOOT ., TEXT . . « « . .

S -

S

SDT, calling. « « o« ¢ e o e o o o e s s

Serial Port 1. . . ¢ v t o t e et e s e e eesnseseess. 10,

Serial Port 2. ¢« ¢« ¢ ¢ ¢ ¢ ¢« ¢ ¢ s o @

SM......
SP. ...
SRe oot
SS......
STe oo

® o o 6 o 0 s s 0 s o 0 0

Stand alone, environment . « ¢« « « « « ¢« s ¢ o 0o o 00 00 o s ...

SU. e et e v e o e eooossossecsaccsnrosssscossssehb

SUPERVISOR MOAE. ¢ ¢ o ¢ o ¢ o o e s 0 0o s 0o sooeeoeseasd0,

Switches

DoOt AEVICE.: ¢ ¢ ¢ o o o o ¢ ¢ 6 6o o o 00 0o s o voseoeeaoasn
POWET—uUp OPLiONS. « o ¢ ¢ ¢ o ¢ ¢ e o o o s a s e oo ecoeocoeos
SYSTEM.BIOS. ¢ ¢ ¢ ¢ o c ¢ ¢ o 0 e o oo ooeoasssocosossese

SYSTEM.INTERP. ¢ ¢ ¢ ¢ a o o 0 o 00 o oo 0o oaaooeoosocseos

system 10CKUD QUMD « « o « s o ¢ v o o e o e 0 0 006000 oa-
—T-

T oo o e oo oo ooooooeatsosoessectscsscsnscsosss

TBe ¢ ¢ ¢ 0@
TEe ¢ ¢ ¢ ¢ &
TERMCHAR . .
TERMCRIF. .
TERMHEXB. .

118

® &6 ¢ 6 06 0 0 0 0 o 0 0

ce....25, 27,

56
47
22
25
15
27
27
67
44
56
37
11
10
58
56
56
56
72
84

92

21
17
17
27
28
22

69
70
71
31
32
32

ASSEMBLER AND SDT MANUAL

INDEX

Terminal, DOOt. « o ¢ v ¢ t e o o o0 e o o aa s s eesssseesl?
TERMTEXT o « o ¢ ¢ o « 2 ¢ 0 6 6 s e asssaoesnsoeasadsdd, 27, 32
trace StatuS. ¢ ¢ ¢ s v s ¢t sttt s s s e s s s e s B9
TRAPs
€ITOTS e ¢ o ¢ o s ¢ o o s 6 s 660 ssaseseaeasess 83, 102
tO debUBEET e ¢ o ¢ o o ¢ o o o s 06 o o e s o s aovesasass 37
-U-

Unassigned Interrupt error.« « . e s e e+ .. .83, 102

Unassigned TRAP €ITOr's « o o ¢ o « ¢ s s s s s s a0 o+ 0. . 83, 102

UNKNOWN ©rTOT « o o ¢ ¢ ¢ ¢ e s s e o s s s s s o s o aoeaeas 83 102

USER MOAE .+ o o o o ¢ o 6 o 0 s o s o co oo oaoosssessasss 92

User StacCK . ¢ o o « ¢ o o o o s 6 0 s 0 s s e s s asasasseees B4
-V -

Vectors, interrupt.....;.................... 17
-W-

Winchester
}mt...l.‘..l.......l...ll........l.i26
-X -

XB. . . 61

T Y
4 7]
AW e o o o a6 oo o o st s nooeuoesascsoessacssecessssBl

ASSEMBLER AND SDT MANUAL 119

NOTES

NOTES

NOTES

NOTES

NOTES

	Cover
	Table of Contents
	I. Introduction
	II. Sage Memory Map
	III. Sage PROMS
	IV. Disk Bootstrap
	V. PROM Entry Points
	VI. Sage Debugging Tool
	VII. Link Information for the 68000
	VIII. 68000 Examples
	IX. Stand-Alone Loader
	Appendix A: Exception Errors
	Appendix B: Floppy Disk Boot Errors
	Appendix C: Winchester Drive Errors
	Appendix D: PROM Routine Entry Points
	Appendix E: Debugger Commands
	Index

