
SOT
Sage
Debugging
Tool

Copyright (c) 1983, Sage Computer Technology, Reno, NV 89502

All rights reserved. Repr<Xluction or use, without express
pennission of editorial or pictorial content, in any manner,
is prohibited. No patent liability is assumed with resPect
to the use of the information contained herein. While every
precaution has been taken in the preparation of this book,
Sage Computer Technology assumes no responsibility for
errors or anissions. Neither is any liabil1ty assumed for
damages resulting from the use of the information contained
herein.

SAGE· is a trademark of SAGE Computer.
p....sySTEM· is a trademark of SofTech MicrosystenJ3.
CP/M-68K· is a tradanark of Digital Research.

SAGE cndPuTER
4905 Energy Way
Reno, Nv. 89502
(702) 322-6868

December 1983

TABLE OF CONTENTS

Table Of Contents

SAGE PROMS •••••••••••••••••••• 15

FRCJ.t VERSIONS • • • • • • • • • • • • • • • •• 16

mad: START-UP TESTS • • • • • • • • • • • • • • 17

RAM MEMORY TE'ST • • • • • • • • • • • • • • • • 21

DISABLING THE ME}M)RY TEST • • • • • • •• 22

DISK BOOTSTRAP ••••••••••••••••• 23

p-SYSTEM FlOPPY OOCYI' • • • • • • • • • • • •• 24

FlOPPY FORMAT • • • • • 26

p-SYSTEM WINCHESTER OOCYI' • • • • • • • • • • • 26

LOADING THE p-SYSTEM BIOS • • • • • • • • • • • 27

mOM ENTRY POINTS ••••••••••••••• 30

SAGE DEBUGGING TOOL •••••••••••••• 37

SOT PHILOSOPHY • • • • • • • • • • • • • • • • • 38

SOT ROO ISTEH USAGE • • • • • • • • • • • • • • • 38

SOT QUICK DESCRIPTION • • • • • • • • • • • • • 39

SOT DETAILED DESCRIPI'ION • • • • • • • • • • • 47

EXCEPI'ION ERRORS • • • • • 81

.ffi<:J,f •

I/O roRTS (general) • • • • • • • • • • • •••

I/O roRTS (specific) •••••••••••••

HAM Memory Allocation • • • • • • • • • • • • •

,~

I

1.01

II

11.01

11.02

11.03

11.04

11.05

III

IIL01

II I. 02

,~
III.03

IV

IV.01

IV.02

IV.03

V

VI

VL01

VL02

VI.03

VL04

VII

INTRODUCTION ••••••••••

WHEN TO USE ASSEMBLY LANGUAGE

SAGE MEMORY MAP

RAM ••••••

LINK INFORMATION FOR THE 68000

i

1

3

• • • • . • • . • 8

8

8

. 9

10

14

••• 84

TABLE OF CONTENTS

VII.01

VII.02

VII.03

VIII

\\{)RKING IN ASSEMBLY LANGUAGE

EXAMPLES • • • ••••••••

STACK AND REGISTER USAGE

68000 EXAMPLES

84

86 ~

. . . . 91

93

IX STAND-ALONE LOADER ••••••••••••••• 99

APPENDIX A: EXCEPTION ERRORS • • • • • • • . • • • • • • 101

APPENDIX B: FLOPPy DISK BOOT ERRORS • • • • • 104

APPENDIX C: WINCHESTER DRIVE ERRORS • • 105

APPENDIX D: mOM ROUTINE ENTRY POINTS • • • • • • •• 106

APPENDIX E: DEBUGGER CQIIMANDS • • • • • • • • • • • • • 107

INDEX • • • • • . . . • . • . • • • • • . . • 114

ATTACHMENT: SOFTECH ASSEMBLER MANUAL

ATTACHMENT: SCHEMATICS

ii

INTROOUCTION

I INTRODUCTION:

The purpose of this IlIlnual is to provide progranmers with
the information needed to rapidly develop and debug assembly
language programs. The content is aimed at seasoned
programners and is not intended to be a tutorial. I f you
haven't progranmed in assembly language before, we recOl'llrend
the following reference material.

68000 ASSEMBLY LANGUAGE PROGRAMMING

By Gerry Kane, Doug Hawkings, and Lance Leventhal, published
by OOOORNE/McGraw-Hill. This is a good introductory text
for progranmers who are unfamiliar with assembly language
progranming.

THE 68000: PRINCIPLES AND PROGRAMMING

By Leo J. Scanlon, a SAMS publication. This is essentially
a textbook for learning assembly language programndng
techniques on the 68000. It includes good discussions on
the philosophy of the 68000, excellent programndng examples,
and valuable reference material •

.c68000 l6-BIT MICROPROCESSOR USER' S MANUAL

Available from Motorola Inc., this manual provides reference
material intended for use by computer designers, software
architeets, and design engineers. It contains a complete
description of the 68000 cOIIlIllind set, essential to anyone
who is going to program at the assembly level. Also
included are timing information, pin descriptions, and
hardware interfacing notes.

ASSEMBLER AND sur MANUAL 1

INTRODUCTION

There are a number of reasons why advanced progranmers use
assembly language in the development of their programs, even
though assembly language progranming ordinarily requires
more time and effort than progranming in a high-level
language such as Pascal, BASIC, or FORTRAN.

One reason is speed. Speed improvements of 10 to 100 times
can be achieved by translating time-critical sections of a
high-level program into assembly language. The easiest way
to do this is to use the "Native Code Generator" utility.
(See the Utility section in the ffiOORAM DEVELOFMENT MANUAL
for more information on the "NOT'.)

Another reason progranmers use assembly language is to
access low-level portions of the computer's hardware.
Following this introduction is an example which illustrates
some ways to achieve speed and low-level access.

This manual contains infonnation on the memory map of the
SAGE, examples on how to link assembly language routines to
high-level programs, and details of the operation of the
PROd routines. The Index and Table of Contents contain
references to all major topics. An appendix provides a list
of assembler errors and run-time errors.

2 ASSEMBLER AND sm MANUAL

INrRODUCTION
WHEN TO USE ASSEMBLY LANGUAGE

1.01 WHEN TO USE ASSEMBLY LANGUAGE :

The decision to use assembly language in a program should
not be taken lightly. AI though assembly language offers
speed, code efficiency, and low-level access, there are also
several disadvantages. Assembly code usually takes longer
to develop and debug than high-level code, and it is nnre
difficult to nndify or expand at a later date. It is also
not portable between different machines (to an Apple or IBM
system, for instance). The p-code produced by the Pascal,
BASIC, and FORTRAN compilers will often run on an Apple or
IBM system with little nndification. Assembly code produced
for the 68000 definitely will not.

The following example illustrates three different approaches
to a programndng problem. We hope this will help the user
select the approach nnst suited to his or her particular
application.

"LED_Test II is a simple program which flashes the SAGE LED
status light green and red 50 times. This task requires a
bit to be set and cleared in one of the SAGE IV's output
ports. Such an access to the low-level hardware nonnally
requires assembly code, but a special UNITWRITE statement
(see the TECHNICAL MANUAL) allows us to access the SAGE LED
directly from a Pascal program. BASIC and FORTRAN lack this
capability , so we would be forced to link to an assembly
language routine or a Pascal unit if we were using either of
those languages.

The source text of three versions of "LED Test" follows this
text. "LED Test 1" is the original program written in
PascaL "LEILTest_2" has two additional COIlJ>iler options
which allow the subsequent generation of native code
(machine code) from the p-code. This is achieved using the
"Native Code Generator" utility (see the PROORAM DEVElOmENT
MANUAL). "LED Test 3" is written primarily in assembly code
which is linked toa small Pascal program. The assembly
code was assembled using SYSTEM.ASSMBLER, the Pascal host
was compi led using SYSTEM.(X)MPILER, and then the two code
files were linked using SYSTEM.LINKER (this process is

ASSEMBLER AND SOT MANUAL 3

INTRODUCTION
WHEN TO USE ASSEMBLY LANGUAGE

described in detail on page 87)

Here are the results of a timing test, along with the final
code size of each program.

Name Execution time
(seconds)

Cbde size
(words)

LED Test 1
LED-Test-2
LED-Test-3

(p-code)
(native)
(assembly)

43.7
3.7
0.6

108
163
78

As you can see from this example, translation to native code
using the "Native Code Generator" offers an attractive
compromise between pure p-code and pure assembly code.
Unfortunately, the dramatic increase in speed is accompanied
by a considerable increase in code size.

The example also shows that assembly language is very
desirable in environments where speed and efficiency are
essential. "LED Test 3" ran 6 times faster than the
translated native Code version, and it took only half the
space. It also ran 72 times faster than the original Pascal
program. However, these benefits ITllst be weighed against
the costs of increased program development time, roore
difficul t roodification of the program in the future, and
loss of portability between different microprocessors.

4 ASSEMBLER AND SOT MANUAL

INTRODUCTION
WHEN TO USE ASSEMBLY LANGUAGE

LED Test 1

PROGRAM LED_Test_1;

CONST LEDLO = -16281;
LEDHI = 255;

{ *** P-code version *.* }

{ Address of LED}

VAR I,J: INTEGER;
Red, Green: PACKED ARRAY[Q ••1] OF O•• 255;

{ Beep bell to end time test}

{ Beep bell to start time test}
{ Define values to turn LED green and red}
{ Flash LED 50 times}

BEGIN
WRITELN (. Start' ,CHR (7»;
Green[Q]: =6; Red[Q]: =7;
FOR I :=1 TO 50 DO

BEGIN
UNITWRITE (1 30,Green[Q],1 ,LEDLO,LEDHI);
FOR J: =1 TO 5000 DO;
UNlTWRlTE (1 30,RedCo], 1,LEDLO,LEDHIJ;
FOR J:=1 TO 5000 DO;
END;

WRITELN(CHR(7J,'End'J;
END.

ASSEMBLER A},TD SOT MANUAL

{ Turn LED green}
{ Waste some time}
{ Turn LED red}
{ Waste some time}

5

INTRODUcrION
WHEN TO USE ASSEMBLY LANGUAGE

LED Test 2

VAR I,J: INTEGER;
Red, Green: PACKED ARRAy[Q ••1J OF O••255;

{ Beep bell to end time test}

{ Turn LED green}
{ Waste some time}
{ Turn LED red}
{ Waste some time

{ *** End native code translation ***)

{ Address of LED}

{ Beep bell to start time test}
{ Define values to turn LED green and red}
{ Flash LED 50 times}

(*** Start native code translation ***)

{ *** Native Code Generated version *** }

CONST LEDLO : -16281;
LEDHI : 255;

{SN+}

BEGIN
WRITELN('Start' ,CHR(7»;
Green[Q)::6; Red[Q)::7;
FOR I::1 TO 50 DO

BEGIN
UNITWRITE (130,Green[Q),1 ,LEDLO,LEDHI>;
FOR J::1 TO 5000 DO;
UNITWRITE (130,Red[Q),1 ,LEDLO,LEDHI>;
FOR J::1 TO 5000 DO;
END;

WRITELN(CHR (7), 'End');
END.
{SN-}

6 ASSEMBLER AND 8m MANUAL

INTRODUCTION
WHEN TO USE ASSEMBLY LANGUAGE

LED Test 3

PROCEDURE AssemblyProg; EXTERNAL;

SEGIN
WRITELN ('S tart' ,CHR (7));

AssemblyProg;
WRITELN(CHR (7), 'End');
END.

*** Linked assembLy code version ***

{ Link to assembly program which}
{ will do all the work}

{ Beep be Ll to start time test }
{ Assembly program does the rest}
{ Beep bell to end time test}

*** This is the assembly language file which is linked to the
*** above PascaL program after it is assembled .

• RELPROC AssemblyProg

LEOLOC .EQU OC067H ;Address of LED control port (FFC067H)

"OVEQ #19.,00 ;Enter superv; sor mode so we can access
TRAP #14. 1/0 area without a bus error
"OVEQ #6.,01 ;Initialize GREEN vaLue
"OVEQ #7. ,02 ;Initialize RED vaLue
"OVEQ #49.,00 :Initialize counter for 50 iterations

510 !'IOVE.S D1,LEOLOC ;LEO : GREEN
"OVE.W #5000.,03 ;00 nothing 5000 times

520 DBF 03,520 ;Wait

"OVE.S 02,LEOLOC ;LEO : RED
"OVE.W #5000. ,03 ;Do nothing 5000 times

$30 OsF 03,$30 ;Wait

DSF 00,510 ;Flash 50 times

ANOLW #OOFFFH,SR :Return to user mode
RTS
.END

ASSEMBLER AND SOT MANUAL 7

.--',

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

SAGE MEMORY MAP

I I SAGE MEMORY MAP

These tables show the allocation of memory and I/O addresses
for the SAGE IV computer.

II.OI RAM:

Addresses (hex)

000000 - OOOOFF

000100 - 000iFF
000200 - ooo2FF
000300 - 0003FF
000400 - 0103FF
010400 - 0133FF
013400 - 0233FF
023400 - BIOS

Contents

Interrupt &Exception Vectors
(see literature on 68000 processor)
Debugger (SDT) RAM area
BIOS RAM area
Debugger (SDT) systan stack
P-System data area (64K, 64K max.)
P-Systan Interpreter (12K)
P-Systan code pool (64K, 64K max.)
RAM Disk

(Note: Bios is placed at top of equipped RAM memory. See ~,

discussion at end of this section.)

I I .02 PROM:

FEOOoo - FF.3FFF Current ma.ts (16K) include startup tests
and simple diagnostic tools; the Sage
Debugging Tool, disassembler, and low
level I/O routines. See page 15
for further information on mOMS.

FE4OO0 - FEFFFF Reserved for future PROM expansion.

8 ASSEMBLER AND SDT MANUAL

SAGE MEIDRY MAP
I/O PORTS (general)

11.03 I/O PORTS (general) :

SAGE has defined a major Input/Output partition for each of
up to 16 boards. Each partition is divided into 16 device
areas of 64 bytes.

Most peripherals are accessed using bytes instead of words,
so they are addressed using the low byte of each word (the
odd addresses).

FFCOOO - FFf'.-3FF Board #1 (Main CPU I/O)
FFC400 - FFC7FF Board #2 (Hard Disk and additional serial

ports)
FFC800 - FFCBFF Board #3 (Reserved for SAGE expansion)
FFCCOO - FFCFFF Board #4 ()
FFOOOO - FFD3FF Board #5 ()
FFD400 - FFD7FF Board #6 ()
FFD800 - FFDBFF Board #7 ()
FFOCOO - FFDFFF Board #8 ()
FFEOOO - FFE3FF Board #9 ()
FFE400 - FFE7FF Board #10 ()
FFE800 - FFEBFF Board #11 ()
FFECOO - FFEFFF Board #12 ()
FFFOOO - FFF3FF Board #13 (Reserved for User)
FFF400 - FFF7FF Board #14 (It II)
FFF800 - FFFBFF Board #15 (f1 It)
FFFCOO - FFFFFF Board #16 (" II)

ASSEMBLER AND sm MANUAL 9

SAGE MEMORY MAP
I/O PORTS (specific)

11.04 I/O PORTS (specific)

Except for the SAGE LED status light, all I/O ports can be
configured and accessed using calls to the SAGE BIOS. We do
not reconmend that you access these ports directly due to
possible conflicts with the BIOS.

Note: The 68000 nnISt be in supervisor lOOde to access these
addresses. Access will be denied and a bus error will
result if the 68000 is in user lOOde.

Board #1 (Main CPU I/O)

FFCOO1 REAL TIME ClOCK (A)
FFCOO3 SERIAL PORT 1 BAUD RATE (B)
FFCOO5 SERIAL PORT 2 BAUD RATE (C)
FFCOO7 MODE WORD FOR A, B AND C AOOVE (8253-S)
FFCO09 - FFCOOF RESERVED

FFCOll - FFC01F IEEE-488 INTERFACE (TMS9914)

FFC021 GROUP-A DIP swrrrn (A)
FFC023 GROUP-B DIP SWITCH (B)
FFC025 FlOPPY CONTROL PORT (C)
FFC027 OONTROL FOR A ,B, AND C AOOVE (8255A-8)
FFC029 - FFC02F RESERVED

FFC031 SERIAL PORT 2 (REMCYl'E) DATA (8251A)
FFC033 SERIAL PORT 2 CONTROL/STATUS
FFC035 - FFC03F RESERVED

FFC041 - FFC044 INTERRUPr ENroDER OONTROL (8259)
FFC045 - FFC04F RESERVED

FFC051 FLOPPY DISK STATUS (NEe 765)
FFC053 FLOPPY DISK CONTROL
FFC055 - FFC05F RESERVED

~

FFC061 PRINTER INTERFACE PORT A
FFC063 HUNTER INTERFACE PORT B

10 ASSEMBLER AND sur MANUAL

SNJE MEMOOY MAP
I/O PORTS (specific)

FFC065 PRINTER INTERFACE PORT C
(LED status light is controlled
by bit 3. 1=red , O=green)

FFC067 PRINTER INTERFACE OONTROL (8255A-8)
FFC069 - FFC06F RESERVED

FFC071
FFC073
FFC075 - FFC07F

SERIAL ~T 1 (TERMINAL) DATA (8251A)
SERIAL PORT 1 CONTROL/m'ATUS
RESERVED

FFC081 - FFC087 REAL TIME CLOCK
FFC089 - FFC08F RESERVED

ASSEMBLER AND sur MANUAL

(8253-8)

11

SAGE MEMORY MAP
I/O PORTS (specific)

Board #2 (Hard disk and additional serial ports)

Auxiliary Serial Channel Ports:

FFC401
FFC403
FFC405
FFC407

AUX 4 SERIAL CHANNEL DATA (2651)
AUX 4 SERIAL CHANNEL STATUS
AUX 4 SERIAL CHANNEL IDDE ROOISTER
AUX 4 SERIAL CHANNEL C<HWID HillISTER

FFC409 - FFC43F RESERVED

FFC441
FFC443
FFC445
FFC447

AUX 3
II "

" 11

" 11

SERIAL CHANNEL DATA (2651)
" "STATUS
" "IDDE HillISTER
" "CCldMAND RIDISTER

FFC449 - FFC47F RESERVED

FFC481
FFC483
FFC485
FFC487

AUX 2.. ..
" 11

" "

SERIAL CHANNEL DATA (2651)
" "STATm
" "t.mE HillISTER
" "rofMAND RffiISTER.

FFC489 - FFC4BF RESERVED

FFC4C1
FFC4C3
FFC4C5
FFC4C7

AUX 1
" II

" II

II "

SERIAL CHANNEL DATA (2651)
" "STATm
" "WDE HillISTER
" "C<DfAND HillISTER

FFC4C9 - FFC4FF RESERVED

12 ASSEMBLER AND sur MANUAL

SAGE MEIDRY MAP
I/O PORTS (specific)

~~-
Winchester drive ports:

FFC501 MISC. OONTROL, PORT A (8255)
FFC503 MISC. CONTROL, FORT B
FFC505 MISC. OONTROL, PORT C
FFf'.-507 MISC. CONTROL, CONTROL REGISTER
FFC509 - FFC53F RESERVED

FFC541 STATUS REGISTER (8259)
FFC543 <n.1MAND REG ISTER
FFC545 - FFC57F RESERVED

FFC581 MAIN DRIVE CONTROL, PORT A (8255)
FFC583 MAIN DRIVE CONTROL, PORT B
FFC585 MAIN DRIVE CONTROL, PORT C
FFC587 MAIN DRIVE CONTROL, CONTFOL REGISTER
FFC589 - FFC5BF RESERVED

FFC5C1 D/ A OONVERTER DATA STR.OBE
FFC5C3 - FFC5FF RESERVED

FFC601 <X>UNTER #0 (8253)
FFC603 COVNTF.:R #1
FFC605 OOUNTER #2
FFC607 MODE HffiISTER
FFC609 - FFC63F RESERVED

FFC641 - FFC77F UNUSED

FFC781 CHARACTER REGISTER (2653)
FFC783 STATUS REGISTER
FFC785 IDDE RffiISTER
FFC787 BUXX CHARACTER CHECK REGISTER
FFC789 - FFC7BF RESERVED

FFC7C1 RAM BUFFER FORT ADDRESS
FFC7C3 - FFC7FF RESERVED

ASSFldBLER AND SDT MANUAL 13

SAGE MEMORY MAP
R~4 Memory Allocation

11.05 RAM Memory Allocation

The present single user RAM allocation provides a full 64K
byte p-System data area. The code pool is also a maximum
possible 64K. System managers allocating meroory for a
multi-user system should refer to the SAGE'" IV TECHNICAL
MANUAL for more information.

The suggested allocation gives room in the Interpreter and
BIOS areas for growth without requiring a configuration
change. The two word floating point interpreter currently
occupies about 9.5K and the four word interpreter currently
occupies about 1O.5K. A 12K area has been allocated for the
interpreter. The current BIOS and buffers occupy between
18K and 32K depending on your system (ie., whether you have
a hard disk or not). The BIOS takes as much memory as it
needs from the top of the system's equipped memory and sets
the top of RAM Disk to below its base. The BIOS size is
expected to grow as more features are added.

Experienced users may want to reconfigure the starting
location and size of the p-System code pool using the
SETUP.OODE program. This should be done carefully as no
cross checks are rmde for mistakes which cause overlap of
areas. Note also that the base of RAM Disk rmy be changed
with SAGE4UTIL.CODE if the code pool is reduced below
23400H.

Users with 128K floppy based systems will need to reduce the
size of the code pool, and possibly the data space. Also,
no Ramdisk can be configured on systems this size.

The starting address of the interpreter is hard coded in the
p-System bootstrap file SAGE. PB<XJl' •TEXT. Also hard coded in
this file are the base and size of the p-System data area.
These values and locations will generally never need to be
modified because a full 64k data area is desirahle.

14 ASSEMBLER. AND SOT MANUAL

SAGE PROMS

III SAGE PROMS

The present SAGE PRa..tS occupy 16K at addresses FEOOOO-FE3FFF
(hex). The PRa~S contain the following:

THE SAGE STARTUP TEST
System-wide tests (which are switch-selectable) are
performed on power-up or reset. These tests include
memory sizing and testing, and PRa..t checksum
verification.

INITIALIZATION AND BOOTSTRAP ROUTINES
The PRa..tS contain routines to initializR the system
and boot from a floppy disk or a hard drive.

I/O SUBROUTINES
A set of low-level I/O subroutines is provided to
access the user's keyboard and terminal, the floppy
drives, and the Winchester drives.

THE SAGE DEBUGGING TOOL
The PROMS contain a powerful debugging tool which
provides a complete environment for debugging
machine-level programs. Its operation is explained
later in this chapter.

ERROR HANDLING
PRa..t routines handle all exception errors such as
bus errors, address exceptions, etc.

Note: The SAGE can accomodate larger rna1S using strapping
changes discussed in the TECHNICAL MANUAL.

ASSEMBLER AND SOT MANUAL 15

SAGE PRCMS
PROM VERS IONS

111.01 PROM VERSIONS

A list of PROM versions follows:

VERSION II DATE DESCRIPTION
--------- --------- -----------

1.0 13-JUN-82 SAGE II (floppy-based SAGE IV)
initial release

1.2 20-DEC-82 General update
2.0 18-MAR-83 Update to 16K PROMS (2764's)

for Winchester disk drives
2.1 08-AUG-83 General update

SAGE users with service capabilities may purchase new PROMs
at the normal spare parts cost. No strapping changes are
required to upgrade from the 8K to 16K PROMS.

In general, changes to SAGE software and hardware are
docwnented in the "SERVICE MANUAL" which can be ordered
through your dealer.

16 ASSEMBLER AND sm MANUAL

SAGE PRCMS
PROM START-UP TESTS

111.02 PROM START-UP TESTS

The SAGE performs a number of system-wide tests whenever it
is turned on or RES~r. This section documents these
activities.

On power-up or when the processor is RESET, the address of
the SAGE PROMs changes from FEOOOO to 000000. The processor
reacts the initial stack pointer and initial start vector
from PROM locations a and 4 respectively. The start vector
points to an address where the ffiCMS normally reside (>
FEOOOa) . When th is address is executed, the hardware
switches the PRClAS back to their normal address location.
The PROMS remain at their normal location (FEOOaa - FE3FFF)
until a power-down or RESET.

A processor diagnostic is run on power-up to check the
integrity of the CPU. Registers are set and read and a
selected instruction set is run. If the test fails, the
processor will stop and the CPU light on the front panel
will be red.

A PRClIl test is run next. It calculates a simple checksum on
the PROM area to insure that the PROM startup program itself
is ok. If an error is detected, the message "PRCM 1 Bad" or
"PR()..f 2 Bad" is displayed. Note that if the PRCl~ is had in
a portion of the program needed for the test or printout,
the system may fail to respond with any output. PRCM 1
refers to the even memory addresses while PRCM 2 refers to
the odd memory addresses.

Next, the terminal baud rate is determined by reading GROUP
A DIP switches on the rear panel. Communications always
uses 8 data bits, 1 stop bit and even parity. (See figure
on next page)

ASSEMBLER AND SOT MANUAL 17

SAGE PROOS
PROM START-UP TESTS

GROUP A

1000000001
SW I 2 3 4 5 6 7 8

+•• I I I I

+" I I I, +t I I I
•• t I I
t t. I I•t. I I I
t •• I
~ +~ I I I

I I I

I I I
,I I
+: I

I I
, , I
• , I
, • I

• • I

I,
•

TERMINAL BAUD RATE

8 data bits. I stop bit and even parity.

19.2 K baud

9600

4800

2400

1200

600

300

reserved. will defaul t to 19.2 K baud

PARITY CONTROL

even parity enabled

disabled

BOOT DEVICE

boot to DEBUGGER

boot to Floppy drive 0.

boot to first partition of Winchester drive 0 .

reserved. defaults to DEBUGGER

FLOPPY CONFIGURATION

96 TPI drive

48 TPI drive

8 reserved

18 ASSEMBLER AND sm MANUAL

SAGE PROMS
PROM START-UP TESTS

Note: For normal operation, the PROMs require
that switch 8 of the Group-A DIP switch be set
off (down). Swi tch R is used to cancel the
memory test or select various maintenance and
debugging options on startup.

On startup, the remote serial channel defaults to 9600 baud
wi th 8 data bits, 1 stop bit, and even parity. Use the PS
command under SOT to change the rate for stand-alone
applications.

An indication of a USAR.T failure is provided via rapid
blinking of the Processor .LED. When initially trouhle
shooting a "dead" system it is important to know if the
processor is communicating with the terminal I/O circuits.
If the processor LED blinks rapidly on startup, this
indicates that the terminal USART is not responding. The
USART transmi t flag should go busy when a character is
transmitted but should never stick in the busy state.

The processor must be reset to get out of the rapidly
blinking LED indication. This check is only present in the
PROM resident terminal driver and is not in the BIOS.

The floppy drive option switch is read to determine which
drive is installed (always double-density, double-sided
format) .

GROUP A

1000000001
SW 12345678,

+

ASSEMBJ J<:R AND SOT MANUAL

FLOPPY CONFIGURATION

96 TPI drive

48 TPI drive

19

SAGE PR()JS
PROM START-UP TESTS

After each of these tests have been completed successfully.
the display should read:

Sage IV Startup Test

20 ASSEr..ffiLER AND SOT MANUAL

SAGE PROMS
RAM MEMORY TEST

111.03 RAM MEMORY TEST

During normal operation, the "SAGE Startup Test performs a
memory test after the previous tests have executed
successfully. Because the SAGE rnemory test destroys the
previous contents of RAM, however, this option may be
disabled (see below).

The first 128k of RAM is checked in the following manner:

1) A long word (4 bytes) is set to
00000000 and read back.

2) The long word is set to FFFFFFFF
and read back.

3) The long word is set to the value
of its own address for later testing,
and the test proceeds to the next
long word.

When all 128K is done, each long word is read to see if it
still contains its address. Then the top word of each 128K
bank is read to see if that bank exists. Once the size of
the additional memory is determined, it is checked just as
the first 128K was.

The rnemory test takes a few seconds.
detected, the system displays:

RAM SIZE = XXXX

If no errors are

If a bad rnemory location is found, an error rnessage is
displayed:

BAD memory @ <addr) is xxxxxxxx instead of yyyyyyyy

The program stops at the first bad location it finds.
Because it re-reads the location to print out the error
message, the error value may be the expected value if the
RAM is intermittent and reads correctly the second time.
The processor will attempt to enter the debugger after a
memory error. If the failed memory occurs in the debugger
stack area (working down from 400H) , the debugger may fail

ASSEMBLER AND SDT MANUAL 21

SAGE PROMS
RAM MEMORY TEST

to operate correctly after the memory error.

• DISABLING THE MEMORY TEST

Occasionally while developing assembly code programs it is
necessary to look at a post mortem dump of memory after a
system lockup. Resetting the SAGE IV normally causes all of
memory to be modified during memory testing and causes the
default TRAP vectors to be initialized. A method has been
provided which will allow entry into the Debugger (SOT) on
reset with minimal modification of memory.

To override the normal startup sequence, set Switch 8 of
Group A to On, and Switches 5 and 6 of Group A to Off. When
you do a RESET now, the terminal will display "SAGE IV
Startup Test" followed by "Bypassed Init" . The processor
immediately enters SDT. The displayed contents of all the
registers will be invalid because they are not saved on
RESET. SOT uses stack memory from location 400H downward,
so a few locations in that area will be modified. A flag at
location 104H is cleared so that SOT will not attempt to use
the Blm.

Do not try to use any canmands other than Display Memory
(OM) before re-initializing the system. Ini tializing the
system may be accomplished with the IS command. Remember to
set Switch 8 to Off and Switches 5 and 6 back to your
desired bootstrap selection.

22 ASSEMBLER AND SOT MANUAI"

DISK J3CX)TSTRAP

IV DISK BOOTSTRAP

The SAGE STAR~OP test ends by reading the bootstrap switches
from the GROUP-A DIP switch to determine what device/program
to boot to:

GROUP A

[000000001
SW I 2 3 4 !5 6 7 8 BOOT DEVICE

• • boot to DEBUGGER

++ boot to Floppy drive '"

++ reserved, defaults to DEBUGGER

++ reserved, defaults to DEBUGGER

The "boot" process requires that the device have on ita
small program at most 2 blocks long. The STARTUP program
loads and runs this "bootstrap" program which loads and runs
an operating system (such as the p-SYSTEM.) The boot
program is usually specific to the operating system being
loaded. However, it must conform to the following SAGE
protocol.

SAGE IV'" bootstrap programs must have the first four bytes
of the code (at 400H) set to the ASCII characters 'J3(X)T'.
In Hexadecimal, these bytes are 42 4F 4F 54 • This data is
checked by the STARTUP loader. If it is not present the
system displays:

Not BOOT 0; sk

ASSEMBLER AND sm MANUAL 23

DISK BOOTSTRAP

If this " header" data is correct the boot program will then
be started at location 404H. The bootstrap is entered in
Supervisor roode. Details of the bootstrap programs for the
p-System follow. For operating systems other than the p
System, refer to the literature you received with your
operating system.

IV.01 p-SYSTEM FLOPPy BOOT

The floppy bootstrap program is located on blocks 0 and 1 of
the floppy diskette. It is loaded by the STARTUP program
from one of two ways.

1. If the switches SW5 and SW6 are set to boot to
the floppy on reset.

2. If the 'IFx'. initialize from floppy command, is
typed from the SDT.

Either way will cause the first two blocks of the diskette
to be read into RAM at location 400H.

If a timeout occurs while trying to access the floppy, the
program assumes that there is no diskette there and
displays:

Put in BOOT disk and press a key (Q -Quits)

Typing a "Q" will display

Boot aborted on drive 0

and control will go to the SOT. Typing any other key will
cause a re-try to boot from the device.

If a disk error occurs, one of the following error messages
will be given:

Drive error (code) on drive (0 or 1)

24 ASSEMBLER AND SOT MANUAL

where
01
02
03
04
05
06
07
08
09
OA
OB

codes are:
-controller failure
-invalid command
-recalibrate or seek failure
-timeout
-missing address mark
-no data found
-overrun
-CRC error
-end-of-cylinder
-unknown
-address out-of-range

DISK BCXITSTRAP
p-SYSTa1 FLOPPy BOOT

When the bootstrap is executed, the stack contains a return
address which may be used (in case of boot failure) to
return to the debugger. Below the return address on the
stack (at-4(A7)) is a word containing the drive number: 0
for the left drive or 1 for the right drive.

Then the BIOS program is called.
section describes that process.)

(The last part of this

The source file of the single-user p-SYSTa1 floppy bootstrap
is called SAGE. PBOOf .TEXT. The file is assembled normally
but not Linked or Compressed. The resulting file
SAGE.PBCXIT.OODE is installed on a diskette using the
Bootstrap Copy facility of the SAGE4UTIL program.

Note: The standard p-System utility BOOTER.OODE
should not be used for installing the bootstrap
(unless the extra steps of Linking and
Compressing are performed). Note that in
Version IV code files there is one block plus a
26 byte header ahead of the actual code in an
unCC»1PRESSED code file.

The routines TERMTEXT, TERMCRLF, and FDREAD in the PRC»1
Dehugger are used by the Bootstrap program for terminal and
floppy I/O. Note that these routines are accessed via a
macro which generates the necessary long absolute addresses.

ASSEMBLER AND SOT MANUAL 25

DISK BOJTSTHAP
p-SYSTEM FLOPPy BOJT

• FWPPY FORMAT
The default floppy driver is set for 8 sectors/track, 512
bytes/sector. There is no track-to-track skew and no
interleaving.

The system can be used to determine the maximum sector on
the diskette and allows booting to 8, 9, and 10 sector/track
double-sided diskettes (SAGE Format). We do not support
booting to a Network Consulting 10 sector diskette which has
a different sector numbering scheme and a different sector
numbering scheme and a different track layout. Also IBM
diskettes cannot be hooted because of their different track
layout.

SAGE4UTIL may be used to set up a bootable 10 sector format
by selecting the SAGE 10 sector format menu. Although this
option is available, it is not ~laranteed by SAGE to work on
all systems and is not recommended as a distribution format.

IV.02 p-SYSTEM WINCHESTER BOOT

The p-SYSTEM Winchester bootstrap is much like the floppy
bootstrap. The bootstrap program is located on blocks 0 and
1 of the Winchester partition. It is loaded by the STARTUP
program from one of two ways.

1. If the switches SW5 and SW6 are set to boot to
the first Winchester drive partition #1 on
reset.

2. If the 'IHx #n', initialize from partition
command is typed from the SOT.

Either way will cause the first two blocks of the partition
to be read into RAM at location 400H.

If a disk error occurs, one of the following error messages
will be given:

Drive error <code) on drive (0 or 1)

26 ASSEMBLER AND SOT MANUAL

where
01
03
04
08
OB
OC
OE

codes are:
-could not initialize VCO
-recalibrate/seek failure
-drive not ready
-CRC error
-address out of range
-wrong cylinder
-bad device number

DISK BCXYrSTRAP
p-SYST~M WINCHESTER BOOT

Then the BIOS is called.
describes that process.)

(The last part of this section

The source file of the p-SYSTEM Winchester bootstrap is
called SAGE.\~.TEXT. The file is assembled normally but
not Linked or Compressed. The resulhng file
SAGE.WBOOT.CODE is installed on a Winchester partition using
the Bootstrap Copy facility of the SAGE4UTIL program.

Note: The standard p-System utility BOaTER.OODE
should not be used for installing the bootstrap
(unless the extra steps of Linking and
Compressing are performed). Note that in
Version IV code files there is one block plus a
26 byte header ahead of the actual code in an
unCOMPRESSF.D code file.

The routines TERMTi'"XT, TERMCRLF, and WDREAD in the PROM
Debugger are used hy the Bootstrap program for terminal and
Winchester I/O. Note that these routines are accessed via a
macro which generates the necessary long absolute addresses.
The PROM routine will have already selected the drive, so a
call to WSELECT is not required.

IV.03 LOADING THE p-SYSTEM BIOS

The p-System Bootstrap first reads in the 4 block p-System
directory from block 2 of the floppy or Winchester
partition. Then the file SYSTEM.BIOS is found and the first
block of the file is read. The first four bytes of the BIOS
code are checked for the four ASCI I characters I BIOS I • If
the proper BIOS data is found the complete SYSTa1.BIOS file

ASSEMBLER AND SOT MMTUAL 27

DISK rn::YrSTRAP
LOADING THE p-SYSTEM BIOS

is read in at the top of all RAM memory. Otherwise, the
message 'Not BIOS code in SYSTEM. BIOS ' is output and the
bootstrap returns to SDT.

Here are some items of interest contained in the
SYSTEM.BIm:

Offset 4 from the start of the code in the
SYSTEM.BIOS file is the size of the BIOS code.

Offset 6 is the size of the RAM buffer area
which is allocated preceding the code. This
size is a worst case value for a Winchester
based system. Floppy only based systems will
determine dynamically at BIOS initialization
that they do not need the extra space for the
Winchester and extra serial channel buffers.

Offset 8 is the offset of the BIOS
Initialization routine address from the
beginning of the code.

Also the RAM Disk boot flag and base address are
taken from the configuration area in the BIOS
file.

The BIOS Initialization routine is executed which sets up
all the hardware and drivers and turns on interrupts. The
Debugger is set up to use the BIOS terminal driver.

Once the BIOS is initializen, the bootstrap uses the BIOS
I/O calls for the remaining disk information. The BIOS
channel map is scanned for the Winchester device and
subdevice number to find the logical channel used for
booting.

The file SYSTEM.INTERP is read into its position in memory
above the p-System data area and below the p-System code
pool area. If the RAM Disk boot flag is set, files from the
disk are copied to the RAM Disk area. The new directory on
the RAM Disk is RAMDISK. A file called FNDB<XYI' on the

28 ASSEMBJ ,m AND sm MANUAL

DISK E(X)TSTRAP
LOADING THE p-SYSTEM BIOS

source device will terminate the copy process.

Finally the processor is put into User rrode and several
argwnents are put on the User stack for initialization of
the p-System Interpreter. The routine then transfers to the
beginning of the Interpreter.

ASSEMBLER AND SDT MANUAL 29

PROM. ENTRY mINTS

V PROM ENTRY POINTS

The SAGE mOMS contain a set of polled I/O routines to
access the terminal, the floppy disk drives, and the
Winchester disk drives. Following is a list of fixed entry
points which allow bootstraps and other stand-alone (without
BIOS) routines access to I/O facilities.

Routines in PRa.! may be called using MACRO assembly
procedures (see the SOFTECH ASSEMBLER MANUAL) to create the
long address given. The macro is necessary because the
assembler only generates addresses with the short direct
addressing mode. The listed offset for each routine should
be used as the macro argument. The offset + FEOOOOH is the
actual address of the routine.

The routines must be called in the 68000 SUPERVISOR mode,
not user mode.

THE LONG JSR "ACRO:

."ACRO LJSR

.WORD 4EB9H

.WORD OOFEH

.WORD %1

.END"

THE LONG J"P MACRO:

30

."ACRO

.WORD

.WORD

.WORD

.END"

LJ"P
4EF9H
OOFEH
%1

ASSEMBLER AND 8DT MANUAL

PROM ENTRY IDINTS

1. KEYBCH - Get a Keyboard Character. Offset=8H

This routine waits for and returns a character from the
terminal port. Bi t 7 is always cleared and lower case
a.lphabetic characters are converted to upper case. The
character is returned as a byte in register DO.

On entry:
On exit:

Use LONG JSR MACRO: LJSH KEYBCH
00= typed character
Registers used: DO

2. KEYCHK - Check for a Keyboard Character. Offset=OCH

This routine tests the terminal USART to determine if a
character is availahle for input.

On entry:
On exit:

Use LONG JSR MACRO:
condition code NE if
" " EQ 11

Registers used: none

LJSR KEYCHK
char is available

" not available

3. TERMCHAR - Output a Character to Terminal. Offset=14H

This routine outputs the character from the low byte of DO
to the terminal port.

On entry: Use IDNG JSH MACRO: LJSR
DO= character for output

On exit: Registers used: none

ASSEMBLER AND SOT MMTUAL

TERMCHAR

31

PROO ENTRY fOINTS

4. TERMTEXT - Output a Text String. Offset=l8H

This routine outputs a string of characters to the terminal.
Register AO is the address of the base of the string and the
string must be terminated with a zero byte.

On entry: Use LDNG JSR MACRO: LJSR TERMTEXT
AO = pointer to first character of string

On exit: Registers used: AO
(AO points to byte beyond zero terminator)

5. TERMCRLF - Print a Carriage Return/Line Feed. Offset=lCH

This routine outputs a carriage return and line feed to the
terminal. Also five nulls are output after the characters
for terminals which need extra time after a vertical
positioning change.

On entry:
On exit:

Use LONG JSR MACRO:
Registers userl: none

LJSH TERMCRLF

6. TERMHEXB - Output a Hexadecimal Byte. Offset=20H

This routine outputs a two-character hexadecimal value
contained in the low byte of register DO.

On entry: Use IDNG JSR MACRO: LJSR TERMHEXB
DO = byte value to be output

On exit: Registers used: none

32 ASSEMBLER AND SOT MANUAL

PROM ENTRY POINTS

7. TERMHEXW - Output a Hexadecimal Word. Offset=24H

This routine outputs a four-character hexadecimal value
contained in the low word of register DO.

On entry:
On exit:

Use LONG JSR MACRO:
Registers used: none

LJSR TERMHEXW

8. FOREAD - Floppy Disk Read. Offset=28H

This routine reads data from a floppy diskette and stores it
in memory. The parameters defining the read are passed on
the stack. The typical calling sequence is:

MOVE.W
MOVE.L
MOVE.L
MOVE.W
LJSR

BL<XXNUM,-(SP)
MEMADDR, -(SP)
NUMBYTES,-(SP)
ORIVENUM,-(SP)
FDREAD

;Logical block no. (2 bytes)
;Memory buffer addr (4 bytes)
;Number of bytes (4 bytes)
;Drive no. 0 or 1 (2 bytes)

On entry:
Use LONG JSR ~~CRO: LJSR FOREAD
Stack (from top - last in)

4 byte return address (stored by LJSR)
2 byte drive number (O=left drive, 1=right drive)
4 byte size in hytes
4 byte memory address
2 byte logical block # (each hlock 512 bytes)

On exit:
DO = error type (0 = no error)
condition code NE if transfer failed.
Registers used: DO,D1,D2,D3,D4,05,07,A1,A4

ASSEMBLER AND SDT MANUAL 33

PROM ENTRY mINTS

9. FDWRITE - Floppy Disk write. Offset=2CH

This routine writes data from memory to a floppy diskette.
The parameters defining the write are passed on the stack
(see example in Floppy Disk Read above).

On entry:
Use LONG JSR MACRO: LJSR FDWRITE
Stack (from top - last in)

4 byte return address (stored by LJSR)
2 byte drive number (O=left drive, l=right drive)
4 byte size in bytes
4 byte memory address
2 byte logical block # (each block 512 bytes)

On exit:
DO = error type (0 = no error)
condition code NE if transfer
Registers used: DO,D1,D2,D3,D4,D5,D7,Al,A4

10. BOOTSX - Floppy disk hoot. Offset=38H

This routine boots from the floppy disk in the drive
specified by the word on the top of the stack. The typical
calling sequence is:

MOVE.W
LJMP

DRIVENUM,-(SP) ;Drive number 0 or 1
BOOTSX

On entry:
Use LONG JMP MACRO:
Stack (from top)

LIMP BCX)TSX

2 byte drive number (O=left drive, l=right drive)

On exit: Never returns!

34 ASSEMBLER MID SOT MANUAL

PROM ENTRY POINTS

11. WSELECT - Winchester Select. Offset=40H

This routine selects the Winchester drive and partition that
will be accessed. NO registers are preserved.

On entry: Use LDNG JSR MACRO: LJSR
Stack (from top - last in)

4 byte return address
4 byte partition number (0-15)

or pointer to a name (> 16)
2 byte drive number (0-3)

WSELF,cT

Note that the 4 bytes for the partition can be interpreted
two different ways. If the long word value is less than 16
then it is assumed to be the partition number. If greater
than 16, the long word is interpreted as an address which
points to the partition name. The name must be 8 bytes long
with zeros filling any unused bytes.

12. RDCHAN9 - Read Winchester channel 9. Offset=03CH

This routine reads the Winchester partition selected. Note
that the partition must have been selected by the WSELECT
call.

On entry:
Use LDNG JSR MACRO: LJSR
Stack (from top - last in)

RDCHAN9

4 byte return address
4 byte length of transfer (in bytes)
4 byte starting memory address
4 byte logical block number

On exit:
Registers used: DO,D1,D2,AO,A1

ASSEMBLF.R AND SOT MANUAL 35

PROM ENTRY mINTS

13. DEBUG - Debugger Entry Point. Offset=30H

This is a non-returning entry point to the ffiCU Debugger
(SOT) for use when terminating a user environment or a
failure during a bootstrap.

On entry:
On exit:

Use LONG JUMP MACRO:
Never returns!

LJMP to Debug

36 ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING TOOL

VI SAGE DEBUGGING TOOL

SOT is a powerful tool for analyzing program operation. SOT
allows you to display and modify memory and registers,
disassemble instructions in memory, trace portions of a
program, set breakpoints, and boot to a floppy or hard disk
drive.

SOT can be entered several ways:

1) On power-up or reset (Group A switches 5 and 6 off).

2) On all EXCEPTION errors that have not been
re-defined by the user.

3) Via a breakpoint (TRAP #15.)

4) Via jump vector in PRaA (see page 36.)

5) Via BIOS call TRAP #14., Function=O (see the
TECHNICAL MANUAL).

SDT can use either the PRaJ polled I/O routines or BIOS
routines for input/output. In S()f(B circumstances
(especially after certain EXCEPTION errors which revert to
PROM I/O), conflicts can arise if both types of drivers are
in use on the same device at the same time. To resolve such
confJicts, use TRAP #14., Function=3 or 4 (see the TECHNICAL
MANUAL,) to install the proper I/O routines before entering
the debugger.

ASSEMBLER AND SOT MANUAL 37

SAGE DEBUGGING T(X)L

VI.01 SOT PHILOSOPHY :
Most SOT commands consist of two characters followed by
optional arguments. SOT prompts the user for a command with
a ">". All arguments are assumed to be hexadecimal unless
preceded by a "/" to indicate a decimal value.

EXAMPLE:

>DM 1000,#A (Display 10 bytes of memory starting at 1000H)
00001000, 0011 2233 4455 6677 8899 ••

>OM 1000,#110 (Display 10 bytes of memory starting at 1000H)
00001000: 0011 2233 4455 6677 8899 ••

SOT skips over commas and spaces between arguments. No
space is required between an SOT corrrnand and the first
argument ("001000" and "DM 1000" are equivalent), but a
register specification is interpreted as part of an SOT
command and may not be separated by a space:

>005
>00 5

(Display register 05)
(Illegal syntax)

VI.02 SDT REGISTRR USAGE :
SOT provides base registers to simplify data entry and
address arithmetic. Let I S suppose that you have a source
listing of a relocatable program. The listing address
begins at OOOOH, but the beginning of the program in memory
might be 5700H. Normally, you would add 5700H to each
address in your listing to find the equivalent address in
memory. However, if you set an SOT base register to 5700H,
SDT will perform the addition for you.

EXAMPLE:
We wish to disassemble the instruction at listing address
1F7F.H. Our program starts at 5700H.

>SS1 5700
>AO S1 +1 F7E ,#1
0000767E 00001 F7E: MULU

38

(A5)+,06

(Set base register S1 to 5700H)
(Disassemble one instruction)
(1 st address: abso lute)
(2nd address: reLative)

ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING TOOL
sm REGISTER USAGE

If we wish every address we enter to be added to the same
offset, we can define a "standard base register."

>5$1 5700
>$1
$1>AD 1 F7E,#1
0000767E 00001 F7E: MULU (ASH ,D6

(Set base register $1 to 5700H)
(Set $1 to standard base register)
<Disassemble one instruction)

The sm prompt now appears "$1>" as a reminder that every
address we enter will be added to base register one.

VI.03 SOT QUICK DESCRIPTION:
Detailed descriptions of commands follow in the next
section.

Base
$0
$1
$2

registers
Absolute base register
User base register 1
User base register 2

(always equals zero)

Breakpoint registers
o User breakpoint register 0
1 User breakpoint register 1

Argument format
Any argument can be specified in decimal if preceded by "I".

addr
[$x+]addr
'ssss'
byte
word
long
#n

An address specified by up to 8 hex digits
An address added to a base reg. (optional)
Data interpreted as an ASCII string
Data specified by up to 2 hex digits
Data specified by up to 4 hex digits
Data specified by up to 8 hex digits
A count used to display n bytes, disassemble

n instructions, etc.

ASSEMBLFR AND sm MANUAL 39

SAGE DEBUGG ING TOOL
SOT QUICK DESCRIPTION

Command summary
Arguments enclosed in brackets are optional.

>$x. 39
Set standard base reg. x

>$. 39
Clear standard base reg.

>AD. . . . • . • . . . 64
Disassemble 20 instructions
from current display loco

>AD [$x+]addr................... 64
Disassemble 20 instructions
starting at addr

>AD [$x+]addrl,[$x+]addr2 .••.... 64
Disassemble instructions
from addrl through addr2

>AD [$x+]addr,#n• 64
Disassemble n instructions
starting at addr

>AR longl,long2•. 52
Arithmetic computation

>DA[x].......................... 53
Display A registers or Ax

>DB[x].......................... 67
Display breakpoint regs.
or breakpoint register x

>DD[x].......................... 53
Display D registers or Ox

40 ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING TOOL
SDT QUICK DESCRIPTION

>DM. 57
Display 256 bytes of memory
from current display location

>DM [$x+]addr. •••.. . .•.••. •••••• 57
Display 256 bytes of memory
starting at addr

>DM [$x+]addr1,[$x+]addr2 ••••••• 57
Display memory from
addrl through addr2

>Il1 [$x+]addr,#n 57
Display n bytes of
memory starting at addr

>DP............................. 54
Display program counter

>DB.. • . • • • • • • • 53
Display all registers

>00. 54
Display status register

>DT[x] .••.•........••.•.•••••••• 72
Display current trace mode
for all traps or trap x

>DU. • 54
Display user stack pointer

>D$[x].......................... !)()

Display base regs. or $x

>ER[x]. •• • • • • • •• ••••• • •• •• • • • •• • 75
Exercise floppy read

>EW[x] • .• •• •••• •• .• . . • • ••• •• • ••• 75
~xercise floppy write

ASSEMBLER AND SDT '1ANUAJ" 41

SAGE DEBUGGING TOOL
SOT QUICK DESCRIPTION

>FB [$x+]addrl,[$x+]addr2, byte. 59
Fill memory addrl through
addr2 with byte

>FB [~x+]addr, #n, byte 59
Fill memory with n bytes
of byte starting at addr

>FL [$x+]addrl,[$x+]addr2, long. 60
Fill memory addrl through
addr2 with data long

>FL [$x+] addr, #n, long......... 60
Fill memory with n long
words of long starting
at addr

>FW [$x+]addrl,[$x+]addr2, word. 59
Fill memory addrl through
addr2 with data word

>FW [$x+]addr, #n, word 59
Fill memory with n words of
word starting at addr

>GC [[$x+]addr]. • • • • • • • • • • • • • • . • 68
Execute program at PC or addr
if specified

>GO [[$x+]addr] • . • • • • . . . • • . . • . • . 68
Execute program, resetting
breakpoint counts

>GS [[$x+]addr]................. 73
Execute subroutine call at
PC or addr

>IF[x]........ ..•••• ..•.••.. 47
Boot from floppy drive 0 or x
(O=left drive, l=right)

42 ASSEMBLER AND sm MANUAl,

SAGE DEBUGGING TOOL
sm QUICK DESCHIPrION

>I FFt [x] . • . . • • • • • . • • • • • • . • • . 48
Boot from floppy drive 0 or x
without loading RAMDISK

>I H[x] [#n ,name] . • • • • • • • . . 48
Boot from hard disk 0 or x

>I HR [x] [lin, name] • • • • • • • . •. 49
Boot from hard disk without
loading RAMDISK

>IS. 47
Initialize System

>LA. • • • . • • . • • • . • • • 80
Load from a remote device
(Motorola object code format)

>LF[x] block,[$x+]addr,count •••. 74
Inad count bytes into
addr from block II block
of floppy drive 0 or x

>LT. • 80
J~ad from the terminal
(in Motorola object code format)

>M [$x+]addrl,[$x+]addr2,
[$x+]addr3. . .•• • 60

Move data from addrl
through addr2 to addr3

>M [$x+]addrl,#n,[$x+]addr2 ••••• 60
Have n bytes from addrl
to addr2

>POB [$x+]addr,byte ..••••••••••. 78
Output data byte to port

ASSEMBLER AND sm MANUAL 43

SAGE DEBUGGING TOOL
sm QUICK DESCRIPTION

>POW [$x+]addr,word 76
Output data word to port

>PIB [$x+]addr.................. 76
Input data byte from port

>PIW [$x+]addr•............ 77
Input data word from port

>PS x........................... 78
Set remote baud rate

>SA [x] [long]................... 56
Modify A registers or Ax

>SB[x] [[$x+]addr],[passcount] ••• 67
Set breakpoint regs or Bx

>SD [x] [long]................... 56
Moctify D registers or Ox

>SM [$x+] addr • • • • • • • • . . • . • • • • . • • 58
Modify memory

>SP [long]...................... 56
Mod ify Program counter

>SR. • . • . • • • • • • • • • • • • • 56
Modify all registers

>SS [long]...................... 56
Modify Status Register

>ST[x] [T ,N].................... 72
Set Traps for Tracing

>SU [long]...................... 56
Modify User Stack pointer

>S$[x] [long]................... 50
Modify base regs. or $x

44 ASSEMBLER AND SOT MANUAl,

SAGE DEBUC,GING TOOL
SOT QUICK DESCR.IPTION

>TB [[$x+]addr]................. 70
Trace without reg. print
starting at PC or addr

>TE. . • • . . • • 71
Terminate trace mode

>TN[x].......................... 71
Trace next x instructions

>TNI[x] ..•...•.................. 71
Trace next x instructions,
interruptible

>TR [[$x+]addr] • • • 70
Begin Trace Mode with register
display

>WF[x] block,[$x+]addr,bytecount 74
Write count bytes from
addr to block # block
of floppy drive 0 or x

>XB[$x+]addr1,[$x+]addr2, 61
byte,[maskbyte] .

Search memory addrl through
addr2 for byte after
masking with maskbyte

>XW[$x+]addr1,[$x+]addr2,
word, [maskword]...... 61

Search memory addrl through
addr2 for word after
masking with maskword

>XL[$x+]addr1,[$x+]addr2,
long,[masklong]...... 62

Search memory addrl through
addr2 for long after
masking with masklong

ASSEMBLER AND SOT MAl\TUAL 45

SAGE DEBUGGING TCX>L
SOT QUICK DESCRIPTION

>XH[$x+]paddrl, [$x+]paddr2, 62
[$x+]addrl,[$x+]addr2

Search memory addrl through
addr2 for pattern in memory
paddrl through paddr2

T>. • • • • • . • . • • . • • . . . 69
<CR> Trace next instruction
(active only when SOT is in
Trace Mode)

46 ASSh"'MBLER AND SOT MANUAL

SAGE DEBUGG ING TOOL
SOT DETAILED DESCRIPTION

VI.04 SDT DETAILED DESCRIPTION:

Initialization and boot commands

>IS

IS disables
memory, and
breakpoints.
reset would.

Initialize system

interrupts, clears and retests
resets all sm registers and
IS performs exactly as a system

>15 System reinitializing
SAGE IV Startup Test [2.13

RAM Size = 1024K

>

>IF[x] Boot from floppy disk

IFx boots from floppy drive x (x=O for left
drive, 1 for right drive, no x defaults to left
drive) .

SOT reads 1K of data from logical blocks 0 and 1
of the diskette into memory starting at location
400H. It then checks that the first four bytes
are the ASCII characters 'BOOT' (42H, 4FH, 4FH,
and 54H) to verify that the diskette has a
bootstrap program installed. The bootstrap
routine is then called at location 404H with the
booting drive number (0 or 1) previously placed
on the stack. If the bootstrap routine returns
to the calling program, control reverts to SOT.

>IF (Boot from floppy drive 0)
Booting from Floppy

UCSD p-System IV.1 Bootstrap (or whicheve.r operating system you use)
Copying to RAM Disk (Copy system files to RAM Disk)

ASSEMBLER AND sm MANUAL 47

SAGE DEBUGGING TCX)L
SOT DETAILED DESCRIPTION

>IFR[x] Boot from floppy disk, preserving
RAMDISK

IFR functions similar to the IF command, pxcept
RAMDISK is not loaded during the (xx)t process.
IFR is usually used to recover information in
RAMDISK after the user accidentally exits his
environment.

The SYSTEM.BIOS and SYST~~.INTERP are still
required to be taken from the floppy diskette
(and therefore do not need to be resident in
RAMDISK). Once these files are loaded, the
system will boot to RAMDISK (if it was
originally configured to do so) without first
copying the files. This rreans that
SYSTEM. PASCAL and SYSTEM.MISCINFD must still be
present in RAMDISK. Note that if the user's
exit was caused by a program crash, RAMfnSK may
no longer contain valid files and the boot may
fail.

>IH[x] [#n,NAME] Boot from hard disk

The IH corrmand allows the user to boot to a
system from a hard drive. All partitions
(except the special case #0) are capable of
being booted to. A boatahle partition must have
the SYSTEM files necessary to run that
operating system. IH has the following
formats:

48

IH Boots to the default partition, drive 0,
partition 1. This is the same partition
that will boat on power-up or RESET if
SW6 and SW5 (port A) are set up and down
respectively.

ASSEMBLER AND SOT MANUAL

IHx

IHx #n

IH NAME

SAGE DEBUGG ING TOOL
SOT DETAILED DESCRIPTION

Where x is drive nwnher 0 through 3.
This boots to partition 1 on the drive
specified.

Where x is the drive number 0 through 3
and n is the parti tion nwnber
1-9,A,B,C,D,E,F where A through F
represent partitions 10 through 15
respectively.

Defaul ts to drive 0, where NAME is the
partition name.

IHx NAME Where x is the drive nwnber (0-3) and
NAME is the name of the partition.

IHRx #n The RAMDISK boot conrnand IHR may be used
once the system has already been booted
to a partition. It is generally used to
recover information in RAMDISK when the
user accidentally left the partition as
IHR does not clear RAMDISK (the IH
commands do). The SYSTEM.BIOS and
SYSTEM. INTERP are still required to be
taken from the parti tioD (and therefore
do not need to be resident in RAMDISK).
Once these files are loaded, the system
will boot to RAMDISK (if it was
originally configured to do so) without
first copying the files. This means
that SYSTEM.PASCAL and SYST8M.MISCINFO
must still be present in RAMDISK. Note
that if the partition was left due to a
program crash, RAMDISK may no longer
contain valid files and the boot may
fail.

>IHR[x] [#0] Boot from hard disk, preserving RAMDISK

See IH command.

ASSEMBLER AND SDT MANUAL 49

SAGE DEBUGG Il'Ki TCOL
SOT DETAILED DESCRIPTION

Base register commands

>D$[x] Display base register

D$x displays the contents of base register x (x=O,1,2). If
no x is specified, the contents of all three base registers
are displayed.

>05 (Display all base registers)
so: 00000000 00005700 00200000
>OS2 (Display base register 52)
S2: 00200000

>S$[x] [long] Set contents of base register

S$x long sets the contents of base register x (x=1,2) to
the value of long . If long is not specified, SOT displays
the current value of the base register and prompts the user
for a new value. Type a <cr> to leave the value unchanged
a t this point. S$ (no arguments) prompts the user for
values for both base registers $1 and $2. Note: Base
register $0 is a special absolute register. It always
contains 0 and may not be modified. See discussion under $
corrrnand.

>SS1 FF
>DS
so: 00000000 000000 FF 00200000
>SS2
S2: 00200000: 5555
>SS
51: OOOOOOFF: 100
52: 00005555:
>

50

(Set base register 51 to OOOOOOH)
(Display all base registers)

(Set base register $2)
(Set to 5555)
(Set both base regi sters)
(Set S1 to laO)
(Type <cr> to leave value unchanged)

ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING T(X)L
SOT DETAILED DESCRIPrION

>$[x] Set standard base register

$x sets base register x (x=O,1 ,2) as the standard base
register. The standard base register is added to any
address input which does not have a base register specified.
SOT corrmands display a physical address and an offset from
the standard base register if one is active. If no x is
specified after the $ comnand, the standard base register
is disabled. To keep the standard register from being added
to an address, type $O+addr to specify an absolute address
($0 is permanently defined as zero).

The current standard base register is displayed with the
command line prompt as follows:

S1>
S2>
>

($1 is the current standard base register)
($2 ;s the current standard base register)
(no standard base reg; ster>

(Disable standard base register)

(Display all base registers)

(Set $2 as standard base register)
(Display 2 bytes at 5555+1)

(Set $1 as standard base reg; ster)
(Disassemble 1 instruction at 352+100)

NOE,D3
(Disassemble 1 instruction at absolute)
(location 452)
(Di splay 2 bytes at 5555+1)

>DS
SO: 00000000 00000100 00005555
>S1
S1 >AD 352,N1
00000452 00000352: ADDI.B
S1 >AD SO+452,N1
00000452: ADDI.B NOE,D3
S1>DM $2+1,N2
00005556 00000001: 7468 th
51>52
S2>DM 1,N2
00005556 00000001: 7468 th
S2>S
>

ASSEMBLER AND SOT MANUAL 51

SAGE DEBUGGING TCX)L
SOT DETAILED DESCRIPTION

>AR longl,long2 Arithmetic computation

AR computes 5 arithmetic results from the two arguments
longl and long2:

(long1+long2) (long1-long2) (long1*long2)
(long1/long2) (remainder long1/long2)

where (long1*long?-) is a 16 bit by 16 bit multiply,
(long1/long2) is a 32 bit by 16 bit divide.

>AR 4COO,F7FE
+: 000143FE FFFF5402.: 499F6800 I: 0000 rem: 4COO

Note that AR can be used to convert a decimal value to hex
by typing a zero for one of the arguments:

>AR 19652,0 (Display hex value of 9652)
+: 00002584 -: 00002584 .: 00000000 (Division by zero not computed)

52 ASSEMBLER AND SDI' MANUAL

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

Displaying 68000 registers

>DR Display all A8000 registers

This command displays the contents of all 8 address
registers, all 8 data registers, the Program Counter, the
User Stack, and the Status Register (see OS corrrnand for
further information on the SR display).

>DR
AO: 00011856 00000D70 00001238 00010400 00012B6C 000104C8 00000400 0007D782
DO: 00000000 000000E4 00000000 00010000 00010001 00000002 00000000 00000000
PC: 0007E8AE US: OOOOEDDE SR: 2000 (S)

>DA[x] Display 68000 address register

DAx displays the contents of address register Ax (x=O-7).
If no x is specified, all 8 address registers are displayed.

>DAS (Display address register AS)
AS: 000104C8
>DA (Display all 8 address registers)
AO: 000011856 00000D70 00001238 00010400 0001286C 000104C8 00000400 0007D782

>DD[x] Display 68000 data register

DDx displays the contents of data register Ox (x=O-7). If
no x is specified, all 8 data registers are displayed.

>DD3 (Display data register D3)
D3: 00010000
>DD (Display all 8 data registers)
DO: 00000000 000000E4 00000000 00010000 00010001 00000002 00000000 00000000

ASSEMBLER AND SOT MANUAL 53

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPrION

>DP Display 68000 Program Counter

DP displays the current value of the Program Colmter along
with an offset from the standard base register if one is
active.

51>DP
pc: 0007E8AE (51: 0007E7AE)

(51 = 100)

>DU Display User Stack pointer

DU displays the current value of the User Stack pointer.

>DU
us: OOOOEDDE

>00 Display 68000 Status Register

DS displays the current value of the 68000 Status Register
along with a mnemonic aid to help the user determine which
flags are set. Within the parentheses that follow the
hexadecimal value of the SR, the presence of the following
letters indicate that the corresponding flag is set:

54

T
S
X
N
Z
V
C

>DS
SR: 2000 (S

Trace mode
Supervisor mode
Extend bit
Negative flag
Zero flag
Overflow flag
Carry bit

(Supervisor mode set; all other fLags clear)

ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

Modifying 68000 registers

A basic format has been established for all substitute
commands. If you wish to modify a single register, you may
do so by specifying the register and the new value in a
single line:

>SAS 6200 (Set reg; ster AS to 6200)

Values may be hexadecimal long values (up to 8 hex digits),
decimal values (preceded by "/"), or ASCII strings (up to 4
characters delimited by single quotes). If you do not
specify a value in the command line, the current value of
the register will be displayed, and you will be prompted for
a new value. At this point, you may enter a new value or
simply type <cr> to leave the contents unchanged:

>SAS
AS: 000104C8: 6200 (Set register AS to 6200)

If you do not specify a register number,
prompted for values for each register of
indicated:

you
the

will be
type you

>SA
AO: 00011856 250
A1: 00000D70
A2: 00001238
A3: 00010400
A4: 0001286C
AS: 000104C8 6200
A6: 00000400
A7: 0007D782

(Set AO to 2SQ)
«cr> to leave A1 unchanged)
C<cr> to Leave A2 unchanged)
«cr> to leave A3 unchanged)
«cr> to Leave A4 unchanged)
(Set AS to 6200)
«cr> to leave A6 unchanged)
«cr> to Leave A7 unchanged)

ASSEMBLER AND SDT MANUAL 55

SAGE DEBOGG ING TOOL
SOT DETAILED DESCRIPTION

>SR Modify all 68000 registers

SR prompts the user for a value for each 68000 register.
Enter a new value or <cr> to leave the contents unchanged:

>SR
AO: 00011B56: 250
A1: 00000070:
A2: 00001238:
A3: 00010400:
A4: 00012B6C:
A5: 000104C8: 6200
A6: 00000400:
A7: 00070782:
00: 00000000: 1234
01: 000000E4: •A'
02: 00000000: 'BC'
03: 00010000: 'OEF'
04: 00010001: 'GHIJ'
05: 00000002: 110
06: 00000000:
07: 00000000:
pc: 0007E8AE:
US: OOOOEDOE:
SR: 2000 (S):
>

(Set AO to 250)
«cr> to leave A1 unchanged)
«cr> to leave A2 unchanged)
«cr> to leave A3 unchanged)
«cr> to leave A4 unchanged)
(Set A5 to 6200)
«cr> to leave A6 unchanged)
«cr> to leave A7 unchanged)
(Set DO to 00001234)
(Set D1 to 00000041>
(Set D2 to 00004243)
(Set 03 to 0044454.6)
(Set 04 to 4748494A)
(Set D5 to OOOOOOOA)
«cr> to leave 06 unchanged)
«cr> to Leave D7 unchanged)
«cr> to leave PC unchanged)
«cr> to leave US unchanged)
«cr> to leave SR unchanged)

See previous page for a description of the format of the
following commands.

>SA[x] [long] Set 68000 address register

>SD[x] [long] Set 68000 data register

>SP [long]

>SU [long]

>SS [long]

Set 68000 Program COlmter

Set User Stack pointer

Set 68000 Status Register

(See DS command for information on SR display.)

56 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SOT DETAILFJ) DESCRIPTION

Memory commands

>DM Display memory

DM has several different forms. If no arguments
256 bytes are displayed following the last
location or the last trace or break encountered.
DM commands can be used to step through memory.

are given,
displayed

Successive

Unexpected break point: 0007E8AE: 4A38 TST.B 0258
>OM (OM displays memory following break)
0007E8AE: 4A38 0258 67CA 4200 60EA 48E7 4040 5868 J8.XgJB.· jHg@@Xh
0007E8BE: 0008 5828 0004 6708 61AC 12CO 5381 66F8 •• X(..g.a,.@S.fx

0007E99E: 0000 0249 4238 0258 0838 0002 C073 6608 ••• lB8.X.8 •• @sf.
tine count error, count; 9

The rather odd-looking output at the right of the display is
an ASCII interpretation of the data on the left. The ASCII
interpretation isn I t particularly meaningful in this
example, but it is very helpful when locating or decoding
strings of ASCII text in memory. Note that non-printing
characters are output as periods.

If one address is specified in the DM corrrnand, 256 bytes
are displayed starting at that address:

($1 = 100)
2074 6869 7320 7472 6170 20M 6363 7572 this trap occur
7320 616E 6420 636F 6E74 726F 6COO 7265 sand control.r

I
I

ASCII

>OM $1+8000
00008100 00008000:
00008110 00008010:

I I
I I
I "- address relat ive to base register
. actuaL memory address

If two addresses are specified, all memory between the two
addresses is displayed. For example, display memory bRtween
R100 and 810A.

>OM 81oo,810A
00008100 2074 6869 7320 7472 6170 20 this trap

ASSEMBLER AND SOT MANUAL 57

SAGE DEBUGGING T(X)L
SOT DETAILED DESCRIPTION

It is also possible to specify a starting address and a byte
count:

>DJiI 8100,#/11 (Display 11 (decimaL) bytes starting at 8100)
00008100 2074 6869 7320 7472 6170 20 this trap

>SM [$x+]addr Set memory at address addr

SM allows the user to enter data directly into the
computer's memory. The format is similar to the format used
to modify registers. The contents of a word (possibly at an
odd address!) are displayed in hexadecimal and ASCII. The
user is then prompted for a new value. Pbssible responses
are:

<cr>

'xx'

In
word

leave contents unchanged, advance to next
memory address
load one or two ASCII characters into the word
(note that SDT does not allow lower case characters
or a single quote to be loaded in this manner)

load n as a decimal value
load a word (up to 4 hex digits)

«cr> to leave unchanged)
(Set 8103 to 0041)
(S et 8105 to 4243)
(Set 8107 to OOOA)
(Set 8109 to 5678)
(Period to term; nate S")

>SJiI 8101
00008101: 7368 th:
00008103: 6973 is: 'A'
00008105: 2074 t: 'BC'
00008107: 7261 ra: /10
00008109: 7020 p : 5678
0000810B: 6F63 oc:
>DJiI 8101,810C
00008101: 74680041 4243 ooOA 5678 6F63 th.ABC •• Vxoc

58 ASSEMBLER AND SDT MANUAL

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

>FB [$x+]addrl, [$x+]addr2. byte

Fill memory with byte

FB fills the range of memory from addrl through addr2 with
the specified byte value.

>FB 1000,1FFF,ES Filling memory... (Fill memory 1000-1FFF with ES)
>Df'l1000,1FFF (Display memory 1000-1FFF)
00001000: ESES ESES ESES ESES ESES ESES ESES ESES eeee••••••••••••

Another form of the FB allows you to specify a starting
address and the number of hytes to fill:

>FB 1000,#/13,1 Filling m.mory ••• (Fill 13 byt.s with 01 starting at 1000)
>Df'l 1000,#10 (Display 16 byt.s starting at 1000)
00001000: 0101 0101 0101 0101 0101 0101 01ES ESES ••••••••••••••••

>PW [$x+]addrl. [$x+]addr2. word

Fill memory with word

FW fills the range of memory from addrl through addr2 with
the specified word value.

>FW 1000,1FFF,ES Filling ...mory... (Fill m.mory 1000-1FFF with OOES)
>Df'l1000,1FFF (Display m.mory 1000-1fFF)
00001000: OOES OOES 00E5 OOES OOES OOES OOES OOES ••••••••••••••••

The second form of the FW allows you to specify a starting
address and the number of bytes (not words!) to fill:

>FW 1000,#5,FEDC Filling m.mory... (FillS by·t.s with word FEDCl
>Df'l 1000,#/16 (Display 16 byt.s starting at 1000>
00001000: FE DC FEDC FEE5 OOES OOES OOES OOES OOES .1.1 ••••••••••••

ASSEMBLER AND SOT MANUAL 59

SAGE DEBUGGING TCX)L
SOT DETAILED DESCRIPTION

>FL [$x+]addrl, [$x+]addr2, long

Fill memory with long

FL fills the range of memory from addrl through addr2 with
the specified long value.

>FL 1000,1FFF,E5 Filling memory ••• (Fill memory 1000-1FFF with 000000E5)
>D!'Il000,lFFF (Display memory 1000-lFFF)
00001000: 0000 00E5 0000 00E5 0000 00E5 0000 OOE5 .••e ••• e ••• e ••• e

The second form of the FL allows you to specify a starting
address and the number of bytes (not long words!) to fill:

>FL 1000,#9,12345678 Filling memory ••• (Fill 9 bytes starting at 1000>
>D!'I 1000,#/16 (Display 16 bytes starting at 1000)
00001000: 1234 5678 1234 5678 1200 00E5 0000 00E5 .4V •• 4V••• • e ••• e

>M [$x+]addrl,[$x+]addr2,[$x+]addr3

Move a range of memory

The M corrrnand rroves the contents of memory from addrl
through addr2 into addresses starting at addr3
Overlapping transfers are handled correctly.

>1'1 1000,2672,2000 !'loving memory... (!'love memory 1000-2672 to 2000-3672)

Another form of the M comnand allows you to specify the
number of bytes to be moved:

>!'I 1000,#/325,2000 !'loving memory •••

60

(!'love 325 bytes from 1000 to 2000)

ASSF.MBI,FoR AND SDT MANUAL

SAGE DEBUGG ING TOOL
SOT DETAILED DESCRIPTION

>XB [$x+]addrl,[$x+]addr2,byte,[maskbyte]

Examine (search) memory

The XB cOl11Tland searches memory from addrl through addr2
for the first occurrence of byte If maskbyte is
specified, each word is ANDed with it before the comparison
is performed. This option allows non-significant bits to be
cleared before the comparison.

it prints the address and the long
If you wish to continue the search,

this point.

When XB finds a match,
word at that address.
you can type a 'e' at

>XB 8220,8260,41 Searching... (Search tor an upper-case 'A' = 41H)
Match at 0000822C: 414C2043 - Continue search (C = Yes)? C
Match at 00008231: 414E4E45 - Continue search (C = Yes)? C
No Mat ch found
>xa 8220,8260,'A',5F Searching... (Search for an 'A' or 'al)
Match at 0000822C: 414c2043 - Continue search (C = Yes)? C
Match at 00008231: 414E4E45 - Continue search (C = Yes)? C
Match at 00008259: 61756420 - Continue search (C = Yes)? C
Match at 0000825E: 61746520 - Continue search (C = Yes)? «cr> aborts)

>XW [$x+]addrl,[$x+]addr2,word,[maskword]

Examine (search) memory

The XW cOl11Tland searches rremory from addrl through addr2
for the first occurrence of word If maskword is
specified, each word is ANDed with it before the comparison
is performed. This option allows non-significant bits to be
cleared before the comparison.

When XW finds a match, it prints the address and the long
word at that address. If you wish to continue the search,
you can type a 'e' at this point.

>XW 8200,82FF,'SE ' Searching.... (Search for upper-case 'SE I
)

Match at 0000820E: 53455453 - Continue search (C = Yes)? C
Match at 00008228: 53455249 - Continue search (C = Yes)? C
No Match found
>XW 8200,82FF,'SE' ,SF5F Searching... (Search for 'SEI or 'set)
Match at 0000820E: 53455453 - Continue search (C = Yes)? C
Match at 00008228: 53455249 - Continue search (C = Yes)? C
Match at 0000824C: 73657473 - Continue search (C = Yes)? «cr> aborts)

ASSEMBLER AND SOT MANUAL 61

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

>XL [$x+]addrl,[$x+]addr2,long,[masklong]

Examine (search) memory

The XL comnand searches memory from addrl through addr2
for the first occurrence of long If masklong is
specified, each longword is ANDed with it before the
comparison is performed. This option allows non-significant
bits to be cleared before the comparison.

When XL finds a match, it prints the address and the long
word at that address. If you wish to continue the search,
you can type a 'e' at this point.

(The following command finds strings in 8500-85FF that begin
with I Th' or I th')

>XL 8500,85FF,20546800,FF5FFFOO Searching •••
Match at 00008556: 20746872 - Continue search (C = Yes)? C
Match at 0000856E: 20746865 - Continue search (C = Yes)? C
No Match found

>XM [$x+]paddrl,[$x+]paddr2,($x+]addrl,($x+]addr2

Examine memory

The XM corrrnand searches memory from addrl through addr2
for the first occurrence of the pattern contained in memory
locations paddrl through paddr2 . No masking is available
for this form of the X command.

When XV finds a match, it prints the address and the long
word at the heginning of the match. If you wish to continue
the search, you can type a 'e' at this point.

62 ASSEMBJ ,ill AND SDT MANUAL

SAGE DEBUGGING 100L
SOT DETAILED DESCRIPTION

(Search for I argument I)

nue search (C = Yes)? C
nue search (C = Yes)? C
nue search (C = Yes)? C

>DM 8546,8552
00008546: 6172 6775 6D65 6E74 argument
>XM 8546,8552,8500,85FF Searching
Match at 00008546: 61726775 - Cont
Match at 00008560: 61726775 - Cont
Match at 0000858F: 61726775 - Cont
No Match found

ASSEMBLER AND SOT MANUAL

(Display memory 8546-8552)

63

SAGE DEBUGGING T(X)L
SOT DETAILED DESCRIPrION

Disassemble memory

>AD Disassemble memory

The form of the AD command resembles that of the OM
command. If no arguments are given, AD disassembles 20
instructions starting after the last displayed or
disassembled rtemory Iocation , or from the last trace or
break address. Successive AD commands may be used to step
through memory.

If one address is specified (AD ($x+]addr) , 20
instructions are disassembled starting at that address.

If 2 addresses are specified (AD ($x+]addrl,($x+]addr2),
memory is disassembled from addrl through addr2

The AD corrrnand also accepts a starting address followed by
a count which indicates the number of instructions to be
disassembled:

>AO 7EOOO,NI10
0007EOOO: MOVE.8
0007E004: MOVE. W
0007EOOS: 8NE
0007EOOA: MOVE.8
0007EOOE: 8TST
0007E012: 8EQ
0007E014: 8SET
0007E01S: ANOI.W
0007E01C: MOVE.8
0007E020: MOVE.8

0224,00
0222,01
16EO007E02OJ
C021,01
#03,01
04 EO007E01SJ
#04,00
N0007,01
30(PC,01.W) ,01
01,C003

(DisassembLe 10 instructions)

64

Note: The AD corrrnand will not accept an odd
address as a starting address because the 68000
does not allow instructions to start on odd
addresses.

ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING TCX)L
SDT DETAILED DESCRIPrION

Breakpoint commands

8DT has two breakpoint registers which allow the user to
pause (break) the execution of a program when the 68000
Program Counter reaches a specified address. At this point,
memory and registers can be inspected and modified, portions
of the program may be disassembled, execution can be
resumed, or tracing (single-stepping) can be initiated.

When SDT implements a breakpoint , it replaces the
instruction at the specified location with a TRAP #15
instruction. When this trap is executed, control returns to
SDT, and it restores the original instruction so that the
location can be properly displayed. These substitutions are
completely transparent to the user, so you will never see
SDT's TRAP instructions in your program unless you enter SDT
abnormally (on an EXCEPTION error, for example). Note that
breakpoints cannot be set in PR~1 memory.

Anytime an instruction which has been replaced by a TRAP
must be execnted, SDT restores the original instruction and
then executes it wi th the trace bit set. The trace bit
enables SOT to regain control as soon as the instruction is
finished executing. The TRAP is then restored and execution
resumes normally. This process is also entirely transparent
to the user.

Each breakpoint register has an associated "pass count"
which allows SDT to ignore a breakpoint a number of times
before breaking. This option is particularly useful when a
breakpoint is located inside a loop. Breaking on every
iteration of the loop would become very tedious, especially
if several thousand i terations were required. If you
specify a pass count along with the breakpoint, you can
break on every 10th pass, 100th pass, 7295th pass, etc.

You nay implement your own breakpoints manually by inserting
TRAP #15 instructions in your program. When SOT encounters
such a trap, it will realize that it is not one of its own
breakpoints and will inform you that an unexpected

ASSEMBLER AND SDT MANUAL 65

SAGE DEBUGGING T(X)L
SDT DETAILED DESCRIPTION

breakpoint was encountered:

Unexpected break point: 00002532: 4E4F TRAP #F (Easy way to enter son
>GO (Cant; nue execut ; on at ; nst r. fo llow i ng TRAP)

66 ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

>DB[x] Display breakpoint register

DBx displays breakpoint register x (x=O, 1).
specified, both registers are displayed:

If no x is

>DB
Breakpoint 0: Inactive
Breakpoint 1: Inactive

(Display user breakpoints)
(Both breakpoints are inactive)

>SB[x] [[$x+]addr],[passcount] Set breakpoint register

The format of the SB corrrna.nd resembles that of other S
corrrnands (see page 44). A "pass count" (see page 44) may be
specified along with the address of each breakpoint. Pass
counts may be in the range 0-65535 (O-FFFFH). If no pass
count is specified, or the pass count is 0 or 1, SOT will
break every time it reaches the breakpoint. A"" is used
instead of an address to disable a breakpoint.

(11." to disable breakpoint 0)
«cr> to leave unchanged)

<Set breakpoint 0 to 5100H)
(Display breakpoint registers)

<0000,0000)
I I
I '- passes already made through break
'- maximum passes before break

<Set brkpt 1 for 17 passes before break)
(Set both registers)

<0000,0000): 1000,FF <255 passes)
<0011,0000): «cr> to leave unchanged)

en. " to disable breakpoint 1)

>S01 2200,/17
>SO
Breakpoint 0: 00005100
Breakpoint 1: 00002200
>SB1 •
>SB
Breakpoint 0: 00001000 <OOFF ,ooom:
Breakpoint 1: Inactive:

>SBO $1 +5000
>DB
Breakpoint 0: 00005100
Breakpoint 1 ~ Inactive

ASSEMBLER AND SOT MANUAL 67

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

~ [$x+]addr Execute program

GO starts program execution at addr If addr is not
specified, execution begins at the address specified by the
current Program Counter. (This is handy if you want to
resume normal execution of a program after a breakpoint, a
break caused by the "break" key. or after tracing.) The GO
command terminates tracing (if active) and resets breakpoint
register temporary pass counts. If you wish to preserve the
temporary counts, use the GC corrrnand.

Break: OOD08006: 702A PIOVEQ ~2A,DO

>DB
Breakpoint 0: 00008006 <OOAO,OOAOl
Breakpoint 1: Inactive
>GO

~ [$x+]addr Execute program

(Breakpoint)
(Display breakpoint regs.)
(Break on 160th pass)

(Resume execution at 8006)

GC is the same as GO except the breakpoint register
temporary pass counts are preserved.

>GC $2+7500

68 ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING TOOL
SOT DETAILED DESCR.IPTION

Trace commands
SOT's Trace Mode is invoked using the TB, TR, TN, or TN!
corrrnand. When sm is in Trace Mode, a "T" appears in front
of the standard prompt:

T>
TS1>

(Trace Mode)
(Trace Mode wi th standard base reg.)

Any time SDT is in Trace Mode, the next instruction (at the
address specified by the Program Counter) can be traced by
typing <cr> instead of a command. Trace Mode is terminated
with the TE, GO, Ge, or GS command.

Important note: All trace corrrnands display
trace information for the instruction that is
about to be executed. A <cr> will execute this
instruction and display information for the next
instruction.

Tracing TRAP instructions

TRAP instructions are treated in a special rmnner during
tracing. TRAP instructions are used to call special
subroutines that the user nonnally wishes to ignore during
tracing. If a TRAP itA is encountered, for example, the user
usually wants to continue tracing his program instead of
tracing the instructions within the TRAP servicing routine.
Furthermore, tracing instructions inside an input/output
TRAP can cause very strange things to happen because SDT may
use the same TRAP to perform I/O during its operation.

Therefore, SOT normally treats a TRAP instruction as a
single indivisible instruction during tracing. It does not
enter the TRAP routine and trace the instructions wi thin.
Realizing, however, that there are times when this is
exactly what a user might want to do, sm prOVides a method
for tracing or not tracing the interior of TRAPs. The ST
and DT corrrnands allow you to specify which TRAPs you wish
to trace and which you want to ignore.

ASSEMBLER AND SOT MANUAL 69

SAGE DEBUGGING TCX)L
SDT DETAILED DESCRIPTION

>TB [$x+]addr Begin Trace Mode

TB begins Trace Mode at addr or at the address specified by
the Program Counter if no addr is given.

Important note: The instruction which is disassembled and
displayed is about to be executed.

>TB (Begin Trace Mode)

Trace: 0007E87E: 46FC I'IOVE N2500,SR
T>Trace: 0007E882: 4241 CLR.W 01 «cr> to execute MOVE instr.)
T>Trace: 0007E884: 1238 MOVE.B 024C,01 «cr> to execute CLR instr.)
T>

>TR [$x+]addr Begin Trace Mode with register display

TR functions identically to TB except all 68000 registers
are displayed along with the disassembled instruction.
Remember that the displayed instruction has not been
executed yet, and its effects on the 68000 registers will
not be observed until the instruction is executed.

>TR (Begin Trace Mode)

Trace: 0007E87E: 46FC MOVE #2500,SR
AO: 00011B56 00000070 00001238 00010400 00012B6C 000104C8 00000400 00070782
00: 00000000 00000000 00000000 00010000 00010001 00000002 00003BOO 00000000
pc: 0007E87E US: OOOOEDOE SR: A004 (TS Z)
T>Trace: 0007E882: 4241 CLR.W 01 «cr> to execute MOVE instr.)
AO: 00011B56 00000070 00001238 00010400 00012B6C 000104C8 00000400 oo0707B2
00: 00000000 00000000 00000000 00010000 00010001 00000002 00003BOO 00000000
PC: 0007E882 US: OOOOEOOE SR: 2500 (S)
PTrace: 0007E884: 1238 MOVE.B 024C,01 «cr> to execute CLR instr.)
AO: 00011B56 00000070 00001238 00010400 00012B6C 000104C8 00000400 00070782
00: 00000000 00000000 00000000 00010000 00010001 00000002 00003BOO 00000000
PC: 0007E884 US: OOOOEOOE SR: A504 (TS Z)
T>

70 ASSEMBLER AND SnT MANUAL

>TN[xl

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

Trace next x instructions

TNx traces the next x instructions ex in range 0-127 or
0-7FH). If a TR command was given beforehand, the 68000
registers will also be displayed. If TB initiated Trace
Mode, no registers will be displayed. If no x is specified
with TN , one screenful of instructions is traced.

>TB

Trace: 0007E8B2: 67CA BEQ
T>TN4

<Initiate trace mode, no reg. display)

CACO007E87EJ
(Trace next 4 instructions)

Trace: 0007E87E: 46FC
Trace: 0007E882: 4241
Trace: 0007E884: 1238
Trace: 0007E888: B238
T>

fIIOVE
CLR.W
I'!OVE.B
CI'!P.B

#2500,SR
01
024C,01
0240,01

>TNI [xl Trace next x instructions, interruptible

TNIx traces the next x instructions like the TN command.
The display produced by TNI may be paused by typing <CTRL
S> (any character continues), or the trace may be aborted
wi th <CTRL-C>. Al though this is a convenient capability,
note that TNI cannot be used to trace a section of code
which is expecting input from the keyboard. This is because
TN! will grab the input characters before your program can.
Use TN if this situation arises.

>TE Terminate Trace Mode

TE returns SOT to normal rrode.

PTE
>

ASSEMBLER AND SDT MANUAL

(Prompt indicates normal mode)

71

SAGE DEBUGGING TOOL
SOT OF-TAILED DFSCRIPTION

>OT[x] Display TRAP trace status

OTx displays the Trace/No trace status of TRAP x (x~-FH).

If no x is specified, the status of all TRAPs is displayed.
(See ST command for further information.)

>DT/15 (Display status for TRAP #15.)
TRAP #F No trace

>ST[x] [T.N] Set TRAP trace status

STx sets the TRAP trace status of TRAP x (x= o-PH). If no
x is specified, a new status for each TRAP is requested.
Three responses are accepted:

<cr>
T
N

leave current status uncha.nged
trace the interior code of this trap
do not trace the interior code of this trap

A "T" or "N" may also be specified from the comnand line:

>5TA T
>5T
(T) race
TRAP #0
TRAP #1
TRAP #2
TRAP #3
TRAP #4
TRAP #5
TRAP #6
TRAP #7
TRAP #8
TRAP #9
TRAP #A
TRAP #6
TRAP #C
TRAP #D
TRAP #E
TRAP #F

72

or (N)o tr ce
No trace T
No trace
No trace

. No trace
No trace
No trace
No tra·ce·
No trace
No trace
No trace
Trace N
No trace
No trace
No trace
No trace
No trace

(Trace TRAP #A)
(Set tracing status for each trap)

(Trace TRAP #0)
«cr> to leave status unchanged)
«cr> to leave status unchanged)
«Cf> to leave status unchanged)
«cr> to Leave status unchanged)
«er> to leave status unchanged)
«Cf> to leave status unchanged)
«cr> to leave status unchanged)
«cr> to leave status unchanged)
«cr> to Leave status' unchanged)
(Don't trace TRAP #10.)
C<cr> to leave stat~s unchanged)
«cr.> to Leave status unchanged)
«cr> to leave status unchanged)
«cr> to leave status unchanged)
«cr> to leave status unchanged)

ASSEMBLER AND SOT MANUAL

SAGE DEBUGG ING TOOL
SOT DETAILED DESCRIPTION

>GS [$x+]addr Go Subroutine

The GS command is a handy way to disable tracing during the
execution of a subroutine or a TRAP. Let's suppose that you
are tracing a portion of your main program and you come to a
BSR instruction. Let I S say that the suhroutine which is
about to be called is a long one, and it has already been
thoroughly debugged. Since you know it already works, it
would he pointless to spend half an hour tracing it when you
want to debug your rmin program. If you type GS , the
entire subroutine will be executed, and SOT will break as
soon as it returns.

GS works on the following instructions:

BSR BRA TRAP JMP JSR Bcc DBcc

If the instruction at the Program Counter (or addr if
specified) is NOT one of the above, GS will not attempt to
execute. If it is, an internal SOT breakpoint is set at the
instruction following the transfer instruction. This means
that arguments cannot be passed as data trailing the call.

8reak: 000041A8 TRAP #9 (SOT breakpoint)
>T8 (Execute TRAP #9)

(TRAP #9 inputs a char., so we type a
character which isn't echoed)

Trace: 000041AA: 6100 8SR 001E[Q00041CA]
T>GS (Execute thjs subroutine)

8reak: 000041AE: 48E7 MOVEM.L #80CO,-(A7) (SOT breaks when subroutine is
finished executing)

ASSEMBLER AND SOT MANUAL 73

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

Input/Output commands

>LF[x] block,[$x+]addr,bytecount

Load from floppy disk

LF loads data from the floppy disk in drive x (x=O for left
drive. 1 for right drive, no x defaults to left drive)
starting at logical block block into memory at addr.
Bytecount specifies the number of bytes to load.

>LF1 126,400,/2300 (Load 2300 bytes from drive 1, block
26, into memory at 400H)

>DM 400,407
00000400: 1028 5820 202D 2020 • (X -

>WF[x] block,[$x+]addr.bytecount

Write to floppy disk

WF writes data to the floppy disk in drive x (x=O for left
drive, 1 for right drive, no x defaults to left drive)
starting at logical block block from memory at addr.
Bytecount specifies the number of bytes to write.

>WF1 126,400,/2300

line count error, count= 2

74

(Write 2300 bytes to drive 1, block
26, from memory at 400H)

ASSEMBLER AND SOT MANUAL

>ER[x] block

SAGE DEBUGGI!'KJ TOOL
sm DETAILED DESCRIPTION

Exercise floppy read

ERx block continuously reads 4K (8 blocks) from the disk in
floppy drive x (x=O for left drive, 1 for right drive, no x
defaults to left drive) starting at block block . A period
is displayed for each successful transfer; an X is displayed
for each unsuccessful transfer. Typing any character will
terminate the ER corrrnand. ER is used rm.inly for checking
drive performance.

ER1 1900 ••••••••••••••••••••
ER 11275XXXXXXXXXXXXXXX

>EW[x] block

(Read blocks 900-907, drive 1)
(Read blocks 1275-1282, dri ve 0)
(Vnsue cess fu l because di sk has on l y
1280 bLocks)

Exercise floppy write

EWx block continuously writes 4K (8 blocks) to the disk in
floppy drive x (x=O for left drive, 1 for right drive, no x
defaults to left drive) starting at block block . A period
is displayed for each successful transfer; an X is displayed
for each unsuccessful transfer. Typing any character will
terminate the EW command. EW is used rm.inly for checking
drive performance.

ASSEMBLER AND sm MANUAL 75

SAGE DEBUGG ING TCOL
SOT DETAILED DESCRIPTION

Port I/O commands

The following commands provide direct access to I/O ports.
Al though ports can be accessed just like normal memory
locations, the substitute memory cOI1'YTlands read from an
address (twice) before writing which may be undesirable when
accessing an I/O device. The PO and PI commands allow a
port to be read or written in one access. These commands do
not verify the existence of a port before accessing it, and
will work on memory as well as ports.

>POB [$x+)addr,byte Output byte data to a port

POB writes byte data byte to the port at address addr

>POS FFC021,'A'
>PQS FFC022,10

>POW [$x+)addr,word

(Outputs A to port FFC021)
(Outputs 10H to port FFC022)

Output word data to a port

POW writes the word data word to the port at address addr
(must be on a word boundary).

>POW FFC022,' AS'
>POWFFC022,1007

>PIB [$x+)addr

(Outputs 'AS' to port FFC022)
(Outputs 1007H to port FFC022)

Input byte data from a port

PIB reads and displays byte data from the port at address
addr .

76

>PIS FFC021
00FFC021: 21

<Inputs a data byte from port FFC021)

ASSEMBT,ER AND SOT MANUAL

>PIW [$x+]addr

SAGE DEBUGGING TOOL
SOT DETAILED DESCRIPTION

Input word data from a port

PlY reads and displays word data from the port at address
addr (must be on a word boundary).

>PIW FFC022 (Inputs word data from port FFC022)
OOFFC022: 0033

ASSEMBLER AND SOT MANUAL 77

SAGE DEBUGGING TOOL
SDT DETAILED DESCRIPrION

>PS x

Set baud rate for remote (modem) serial channel

PS x sets up the baud rate for the remote (modem) serial
channel according to the following values for x:

x: Rate:

o reserved (currently same as 19200 baud)
1 300 baud
2 600 baud
3 1200 baud
4 2400 baud
5 4800 baud
6 9600 baud
7 19200 baud

On startup, the remote serial channel defaults to 9600 baud
with 8 data bits, 1 stop bit, and even parity.

78 ASSEMBLER AND SOT MANUAL

SAGF. DF.BOGGING TOOL
SDT DETAILED DESCRIPI'ION

Motorola Object Code Format

Programs and data tray be loaded from the Terminal or Modem
serial channels using the LT or LA command. These commands
use the standard Motorola object code format. This format
consists of ASCII characters formed into records (typically
printed on one line). Each record starts with the character
'S' and is followed by a record type number, a byte count,
an address, the memory data, and a checksum.

record: Stccaaaadddddddd •••ddss
or Stccaaaaaadddddddd ••• ddss

S the ASCII character'S' which always starts a
record.

t type of record (single digit):

o - is the header record which generally contains
only a program name in the data field. This
record is ignored by the loader routine.

1 - indicates an object code record with a two byte
address field, 'aaaa'.

2 - indicates an object code record with a three
byte address field, 'aaaaaa'.

9 - is a termination record which indicates that
the load is complete.

cc Hexadecimal byte count of the remaining characters
in the record (address, data, and checksum).

aaaaaa or
aaaa is the hexadecimal memory address where the

data which follows is to be loaded. This field is
present for all records but ignored for the type 0
(header) and 9 (terminator) records. For type 0,
1, or 9 records the address is contained in 4 hex
characters, while for type 2 records the address
is contained in 6 hex characters.

dd represents a two hex character value for each

ASSEMBLER AND SDT MANUAL 79

SAGE OEBUGG ING TCX)L
SOT DETAILED DESCRIPTION

object code byte. F~ch record may contain up to
252 bytes of object code although 32 is typical in
order to allow a paper listing.

ss is the one's complement of the sum of all the
ASCII character bytes from the byte count (including
the byte count) to the end of the data.

Note that at the beginning of each record the loader will
ignore all characters except 'Q' which will cause the loader
to terminate and'S' which starts the record. This allows a
Carriage Return and Line Feed to terminate each line for
printout.

Examples:

5006000048445218
510710801 FFE4E728B
520A010000323COO035641 ED
59030000FC

>LA Load rremory from auxiliary (modem) port

>LA (Load data from modem port)

>LT Load rremory from terminal port

>LT

80

(Load data from term; na l port)

ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING T(X)L
SDT DETAILED DSSCRIPTION

• EXCEPTION ERRORS
When processing an exception error, interrupts are turned
off and the BIOS is disabled, unless the user has re
directed the error to his own error handling routine. Non
user-intercepted errors have this format:

EXCEPTION: <error type> 'Error at' <8 digit Location>

Note that the location displayed will sometimes point to the
instruction following the instruction that caused the error
due to the way the 68000 increments its program counter.
Error types are defined below.

ASSEMBLER AND SOT MANUAL 81

SAGE DEBUGG ING TOOL
SOT DETAILED DESCRIPrION

Bus Error:
The processor tried to read memory and there was no
response. Memory may not exist. A hardware strapping
option determines what memory is equipped. Additional
information is displayed:

Function:<4 digit word> Access:<8 digit add,.> Instr:<4 digit>

Function: Bits 0-2 ••are the state of the processor
function code outputs FCO,FCI and FC2

Bit 3 .. is 0 for an instruction, 1 for not
an instruction.

Bit 4 .. is 0 for write, 1 for read.

Access
Instr

is the address of the attempt.
is the instruction being executed

Address error: The processor attempted to access a word or
long word on an odd address. Addi tional information is
displayed with this error:

Function:<4 digit word> Access:<8 digit add,.> Instr:<4 digit>

Function: Bits 0-2 .. are the state of the processor
function code outputs FCO,FCI and FC2

Bit 3 .. is 0 for an instnlction, 1 for not
an instruction.

Bit 4 •• is 0 for write, 1 for read.

82

Access
Instr

is the address of the attempt.
is the instruction being executed

ASSEMBLER AND SOT MANUAL

SAGE DEBUGGING T(X)L
SOT DETAILED DESCRIPTION

Illegal Instruction error: There are 2 unused opcodes
(Axxx & Fxxx) in the 68000 which are currently undefined and
will give this error if an attempt is rmde to use them.
Also, any undefined instruction format or addressing mode
will cause this error.

Ari thmetic error: An attempt was rmde to divide by zero
or a CHK instruction was executed (user needs to define
vector) or a TRAPV instruction was executed (user needs to
define vector).

Privilege error: User tried an instruction which reqUires
SUPERVISOR mode.

Reserved TRAP Certain TRAP locations have been reserved by
Motorola for future use and should not be used.(This error
should never occur.)

Unassigned TRAP error: There are 16 trap locations in the
68000, 0-14 of which are norrmlly unassigned hy the
Debugger. Trap 15 is used for breakpoints by the Debugger.
Traps 8 to 14 are used by the BIOS.

Unassigned Interrupt error: There are 6 rmskable auto
interrupt vectors. Normally all of them are unassigned by
the debugger.

RAM Parity error: The 7th auto-interrupt vector is non
maskable and is used for RAM parity error reporting.
Remember when troubleshooting that the Parity chip itself
could be the cause of this error. Note that the location
given is where the program was executing and is not
necessarily the location with the parity error.

Unknown error: Either the program entered the TRAP handler
illegally or the superVisor stack was not set to point to
valid RAM.

ASSEMBLER AND SOT MANUAL 83

LINK INFORMATION FOR THE 68000

VI I LINK INFORMATION FOR THE 68000

VII .01 WORKING IN ASSEMBLY LANGUAGE :

The following files are useful to the assembly language
programmer:

SYSTEM.EDITOR The system editor is used to create
source text of an assembly language
program. The source text is a hJman
readable (more or less) text file which
is then translated into a machine
readable code file using
SYSTEM.ASSMBLER.

SYSTEM. ASSMBLER This assembler is used to translate the
source text of an assembly program into
a code file.

68000.0Il(x)DES This file is necessary to provide
SYSTEM.ASSMBLER with information about
68000 assembly code (other OR:OOE files
enable the Adaptable Assembler to
assemble code for other micro
processors).

68000.ERRORS This is an optional file which, if
present, will enable SYSTEM.ASSMBLER to
print expanded error messages when it
encounters errors in the source text.

SYSTEM •LINKER The linker is used to link assembly
language routines with other separately
assembled routines or high-level
programs (examples are shown late in
this section).

84 ASSEMBLER AND SOT MANUAL

LINK INFORMATION FOR THE 68000
WORKING IN ASSEMBI ,Y LANGUAGE

COMPRESSOR.CODE This utility transforms a code file
generated by SYSTEM.ASSMBLER into a
ready-to-run memory linage (used to
develop stand-alone or p-System
independent code). CXMPRESSOR removes
the p-System code file overhead and
applies relocation information to the
code. See the PROGHAM DEVELOPMENT
MANUAL for further information.

Sophisticated users who want to write utilities dealing with
assembly code files will find information on code file
formats in the p-SYSTEM INTERNAL ARCHITEGrURE GUIDE
(available from SAGE).

ASSEMBLER, AND SOT MANUAL 85

LINK INFORMATION FOR THE 68000
EXAMPLES

VII.02 EXAMPLES
Following is a consolidated example of using assembly code
files from a Pascal program. It shows how to create, link
and run an assembly code program. Later examples explain
some of the operations used here.

86 ASSEMBLER AND SOT MANUAL

LINK INFORMATION FOR THE 68000
EXAMPLES

EXAMPLE 1: LINKING ASSEMBLY ROUTINES TO A PROGRAM

Editor is used to create a Pascal program which
two assembly code procedures (denoted by

This program is S(aved under the name

First, the
references
EXTERNAL) •
MAINPRCG. TEXT •

{ This is a sample Pascal program which uses assembLy
language procedures for 32 bit addition and subtraction}

PROGRAM MainExamp;

TYPE INT32 = RECORD
H: INTEGER;
L: INTEGER;

END;

{ Define a 32-bit integer}

VAR Val1,Val2,Val3: INT32;

PROCEDURE ADD32 (VAR Resul t,Arg1 ,Arg2: INT32); EXTERNAL;

PROCEDURE SUB32 (VAR Resul t,Arq1 ,Arg2: INT32); EXTERNAL;

BEGIN { MainExamp }
Val1.H:=O; Val1.L:=-1; {Set up value of 65535 }
Val2.H:=O; Val2.L:= 4; {Set up value of 4 }
{ Val3 := Val1 + Val2 }
ADD32(Val3,Val1 ,VaL2);
WRITEUH'Addition: High word;; t,VaL3.H,

I Low word::: ',Val3.L);

Val2.H:=O; Val2.L:=-2; {Set up value of 65534
{ Val1 := Val3 - VaL2 }
SUB32 (Val1 ,Va l3 ,Val2);
WRITELN(lSubtraction: High word = • ,Val 1 .H,

I Low word = ',VaL1 .. L);
END.

ASSEMBLER AND SOT MANUAL 87

LINK INFORMATION FOR THE 68000
EXAMPLES

Next, the two assembly procedures are created with the
Editor and S(aved in the file ASMPROGS.TEXT.

Example assembly routines:
Procedures for 32 bit arithmetic

88

.RELPROC A0032,3
I'lOVEA.L (SP)+ ,AD
I'lOVE.W (SP) +,07
I'lOVE.W (SP)+,06
I'lOVE.L 0 (A6,06.U ,DO
AOO.L 0(A6,07.U ,DO
I'lOVE.W (SP)+,07
I'lOVE.L 00,0(A6,07.U
JI'lP (AO)

.RELPROC SUB32,3
I'lOVEA.L (SP)+,AO
I'lOVE.W (SP)+ ,07
I'lOVE.W (SP)+,D6
I'lOVE.L 0(A6,D6.U ,DO
SUB.L 0 (A6,07.U ,DO
I'lOVE.W (SP)+ ,07
I'lOVE.L 00,0 (A6,07.U
JI'lP (AO)
.ENO

;Save return address
;Get address of second argument
;Get address of fi rst argument
:Get first argument
:Add in second argument
;Get address of result
:Save resuLt
;Return

:Save return address
;Get address of second argument
;Get address of first argument
:Get fi rst argument
;Subtract second argument
;Get address of resuLt
;Save result
iReturn

ASSEMBLER AND SDT MANUAL

LINK INFORMATION FOR THE 68000
EXAMPLES

Now compile the Pascal program.

SCREEN DISPLAYS:

Main prompt Line
Campi l in9 •••
Camp; Le what text'?
To what cadef; le?
Output file for campi led Listing?
Pascal camp; ler
< 0> •••••••••••••
ADD32
< 13>••
SUB32
< 15>•••
I'IAINEXAI'I
< 18> ••••••••••••

30 lines compiled

- for compile

I'IA.INPROG <CR>
I'IAINPROG <CR>
<CR> - for none

YOU TYPE:

I'IAI NEXAI'I
The code is stored in the file I'IAINPROG.CODE.

Next assemble the 68000 assembly code routines.

SCREEN DISPLAYS:

Main prompt line
Assembl ;n9 •••
Ass-emble what text?
To what codef; le?
68000 Assembler [Iv ••OJ
Output fiLe for assembled Listing
< 0> ••
ADD32
< 2> ••••••••••
SlJl332
< 12> •••••••••
Assembly complete: 21 lines

a errors f Lagged on th i s

A - for assemble

ASI'IPROGS <CR>
ASI'IPROGS <CR>

<CR>

assembLy

YOU TYPE:

ASSEMBLER AND SOT MANUAL 89

LINK INFORMATION FOR THE 68000
EXAMPLES

Now the assembly routines must be linked to the Pascal
program. Make sure that the specified Otltput file has the
extension '.CODE' or the file will not execute.

SCREEN DISPLAYS:

Main prompt line
Li nki ng •••
Host file?
Opening RAMDISK:MAINPROG.CODE
Lib fi Le'?
Opening RAMDISK:ASMPROGS.CODE
Lib file?
Map fi le?
Reading MAINEXAM
Reading ADD32
Output fi Le?
Linking MAINEXAM #2

Copyi ng prot ADD32
Copying prot SUB32

line count error, count= 14

L - for linking

MAINPROG <CR>

ASMPROGS <CR>

<CR>
<CR>

EXAMPLE. CODE

YOU TYPE:

Now the final linked result in EXAMPLE.CODE is ready to
eXecute.

Main prompt line
Execute what fi Le?
Addition: High word: 1
Subtraction: High word;; 0

90

x - for execute
EXAMPLE

low word;; 3
Low word:: 5

A,.SSEMBLER AND SOT MANUAL

LINK INFORMATION FDR THE 68000
STACK AND REGISTER USAGE

VII.03 STACK AND REGISTER USAGE
Information from the Pascal calling rOlltine to and from the
assembly routine is passed on the User Stack SP=A7. The
first 4 bytes are always the return address. Then the
arguments, always word values, are passed.

PROCEDURE EXAI'IPLE(arg1 ,arg2 ••••• argN) ;EXTERNAL;

SP ----> RET ADDRESS
argN

arg2
arg1

When the argument is specified as VAR, the value passed from
Pascal to the assembly routine is a word OFFSET indicating
where the argument is in the p-System data area. Register
A6 points to this data area. To calculate the true location
use the INDIRECf ADDRESSING WITH DISPLACEMENTS AND INDEXES
mode:

Affective addr

A6

xx (A6,Rffi.L)
I I
I 0_ index for location of variable
0_ points to the p-System data area

0_ byte displacement within the variable

A6 points to the start of the
data

A6-+OFFSET

A6+OFFSET+xx

ASSEMBLER AND SDT MANUAI ,

LSTCOUNT is an offset into data
area
byte displacement within variable

91

LINK INFORMATION FOR THE 68000
STACK AND REGISTER USAGE

The OFFSET passed from the Pascal program must not be sign
extended as it is a positive value from 0-64K. This means
that the high part of the register REG.L used in the
effective address must be zero. D6 and 07 are provided with
their high 16 bits already zeroed to make it easy to ~UVE.W

the OFFSET into the register.

Assembly programs may use the data registers 00-05 and the
low word of on and 07 without saving. The high word of 06
and 07 are zero and must stay zero. Only address registers
AO-A2 may be used without saving the previous values. All
routines are called in USER mode, not Supervisor nude.

92 ASSEMBLER AND SOT MANUAL

VIII 68000 EXAMPLES

68000 EXAMPLES

Often when writing an assembly code routine, it becomes
necessary to pass the ADDRESS of a Pascal variable through
as an argument, so that the assembly routine and Pascal
routine can both use the variable.

In the Pascal routine, use the VAR specification for the
argument:

PROGRAM TRYEXAMPLE;
VAR SHARE: INTEGER;
PROCEDURE EXAMPLE (VAR WESHARE: INTEGER) ;EXTERNAL;

BEGIN
EXAMPLE (SHARE);

END.

In the assembly code routine calculate the addr:

START
.PROC EXAMPLE,1
MOVEA.L (SP)+ ,AO
MOVEQ #0,00

MOVE.W (SP)+,DO
LEA O(A6,DO.U ,A1

JMP (AD>
.END

; one argumen t
;Save the return address
;High part of reg should
;be zeroed
;Get the argument.
;Calculate addr of SHARE
;body of routine
;return to PASCAL

Variables defined as .PUBLIC or .PRIVATE are also word
offsets to the data area just as VAR arguments are.

ASSEMBLER AND SOT MANUAL 93

68000 EXAMPLES

Register D6 and D7 already have their high 16 bits zeroed.
This provides a convenience in that the user does not have
to set up a register himself:

START

94

• PROC EXAMPLE,1
MOVEA.L (SP)+ ,AD
MOVE.W (SP)+ ,D6
LEA Q{A6,D6.U ,A1

JMP (AQ)
.END

one argument
Save the return address
Get the argwnent.
Calculate addr of SHARE
body of rout; ne
return to PASCAL

ASSEMBLER AND SOT MANUAL

68000 EXAMPLES

EXAMPLE 3:PASSING A STRING TO AN ASSEMBLY ROUTINE.

For a string or byte array parameter which is indicated as
variable (VAR) , the Pascal calling routine passes the offset
of the string address to the assembly code routine. In the
example the true address of the string is calculated and the
string is changed. Control returns to the Pascal routine
which prints out the changed string.

Note: If the address is calculated with a zero
displacement (giving the start of the string)
that address contains the LENGTH of the string
not the first character in it.

PROGRAM TRYS;
VAR S:STRING;
PROC EDURE EXAMPLE (VAR S: STRING); EXTERNAL;

BEGIN
S:=' ';
EXAMPLE (S);
WR ITELN (' EXAMPLE SAYS:',S);

END •

•RELPROC EXAMPLE,1
START MOVEA.L (SP)+,AO

MOVEQ #0,00
MOVE.W (SP)+,DO
LEA 2(A6,00.U ,A1
MOVE.B #"H",(A1)+
MOVE.B II"I",(A1)+
JMP (AO)

.END

ASSEMBLER AND SOT MANUAL

;one arguf7Ie"t
:Save the return address
;C lear the high part DO
;Get the argument.
;Calculate 5[2] addr.

;return to PASCAL

95

68000 EXAMPLES

Strings or byte arrays which are passed as Value parameters
(without VAR), must be accessed in a special method using a
Segment Pointer. This process is necessary because the
string may either be in the data area or in the code area
(string constants). The Segment Pointer is passed on the
stack as two words. The first word (top of stack) contains
either 0 (NIL) or a pointer to a segment environment record.
If the first word is 0 then the second word is the offset of
the string in the data area and may be accessed as described
above. If the first word is not 0 then the access is more
complicated because the data is a constant in the code area.
The user must also insure that the segment with the constant
being accessed is resident in the code pool. The following
facts are necessary to track down the constant data.

II First Word (tos) is a pointer to the EREC in the data
area.

II Second Word is an offset of the constant into the
segment.

II The third word of the EREC points to the SIB (Segment
Interface Block) in the data area.

II The first word of the SIB points to the code pool
descriptor in the data area.

II The second word of the SIB is the offset of the segment
in the code pool.

II The first two words of the code pool descriptor are
a long word pointer to the base of the code pool.

96 ASSEMBLER AND SOT MANUAL

I'lOVEA.L
I'lOVE.W
BNE.S
I'lOVE.W
LEA
BRA.S

Example of string value pa.rameter access
.RELPROC YELLOW BRICK ROAO,2 ;Actually one parameter

- - ; with 2 words
(SP)+,AO :Save return address
(SP)+ ,D7 :Get fi rst word parameter
$10 ;String is in code area
(SP)+ ,D6 ;Easy access in data area
0{A6,06.U,A1 ;Form address of string
$20

68000 EXAMPLF.S

$10

$20

I'lOVE.W 4{A6,07.U ,07
I'lOVE.W 0{A6,07.U,06
I'lOVEA.L 0{A6,06.U ,A1
I'lOVE.W 2 {A6,07.U ,06
AOOA.L 06,A1
I'lOVE.W {SP)+,06
AODA.L D6,A1

iGet pointer to SIB
;Get pointer to pool descriptor
:Get base of code pool
;Get offset of segment in pool
;Form address of segment
;Get offset of string in segment
:Form address of string

ASSEMBLER AND SDT MANUAL 97

68000 EXAMPLES

EXAMPLE 4: A RELOCATABLE ASSEMBLY CODE ROUTINE WITH FIXED
PRIVATE AREA.

It is often necessary to set up a data area for an assembly
code routine that keeps values between calls to the routine.
One way to do this is to make the assembly code a ". PROC"
which fixes the entire routine in the heap. This means that
there is less room for user data. By making the routine
relocatable, and putting only the variables in the data
area, the code now resides in the code pool. This is done
with" .RELPROC" and" •PRIVATE" .

The value of the label specified in the ".PRIVATE" is a word
offset to the data area just as VAR arguments are.

PROGRAI'I TRYlT;
PROCEDURE EXAI'IPLE;EXTERNAL;

BEGIN
EXAI'IPLE;

END.

(simple calling routine)

• RELPROC EXAMPLE
.PRIVATE LSTCOUNT

START MOVE.W #LSTCOUNT,06
ADDQ.L #4,O(A6,D6.Ll
RTS
.END

;ReLocatable assembly code .
;Setup storage area on heap~

;Increment count by 4
;Return addr sti Ll on stack

98

NOTE: Variables def ined wi th " . PUBLIC" are
references to data defined in a Pascal program
and must also be accessed as an offset wi thin
the p-System data area via A6.

ASSEMBLER AND SOT MANUAL

STAND-AlDNE WADER

IX STAND-ALONE LOADER

The Stand Alone Assembly Code loader utility provides a
method of loading and starting an assembly language routine
which is independent of the p-System (but not the BIOS).
This loader pronq:>ts the user for the code file nwm, load
address, and starting address. <nee this infonnation is
given, the routine disables the hooks in the BIOS to the
interpreter and sets up the BIOS call to load and start the
assembly code. The assembly code may overwrite the p-System
data, code, and interpreter but mst preserve the BIOS.
Once the assembly code is loaded it could disable interrupts
and overwrite the BIOS area if necessary.

The WADASM program is used to load and start a stand alone
assembly code program. The assembly code program mst be
Linked and C~ressed to form a file which contains only an
image of the assembly code with no header or relocation
infonnation.

The WADASM program will query the user for the file nwm
containing the assembly code. The program will
automatically append the '.())DE' suffix if not inhibited
with a trailing period. A carriage return here will
terminate the program.

The program then asks for the Target memory location for the
start of the code file in hexadecimal. A carriage return
will default to the typical location 4OOH. Note that the
complete code file is loaded including the remainder of the
last 512 byte block past the end of the assembled code.

The program will ask for the Code startup address in
hexadecimal. A carriage return here will default the
startup address to 400H. Finally the program wi11 query,
"Ready to load:" and the user should reply with a Y to
initiate the loading and starting of the assembly code
program. Any other character will abort the process with a
"Program aborted" message.

ASSEMBLER AND sur MANUAL 99

STAND-ALONE WADER

The load and startup pararooters are roved by the BIOS onto
the System stack. The original p...system program and
interpreter my be overwritten by the new assembly code
program. Note that the BIOS may return to the calling
program if an error occurs while loading the assembly code
file. This may cause a system crash if a portion of the p
System has already been overwritten before the error. If
not, a "Load failed" massage will be displayed.

Note that a coomand file might be useful to set up the
consistent execution of a stand alone assembly code program.
Such a file (LOADCMD.TEXT) might look like:

·XI..OADASM
CODEFILE
1000
1000
Y

To start the routine type in X I=LO~ID.

The lOADASM.CODE file contains the SIO Unit from the SAGE
Toolkit and the FILE INFO Unit from the p-System
distribution.

I

100 ASSEMBLER AND sur MANUAL

APPENDIX A:
EXCEPTION ERRORS

APPENDIX A: EXCEPTION ERRORS

When processing an exception error, interrupts are turned
off and the BIOS is disabled, unless the user has re
directed the error to his own error handling routine. Non
user-intercepted errors have this format:

EXCEPTION: <error type> 'Error at' <8 digit location>

Note that the location displayed will sometimes point to the
instruction following the instruction that caused the error
due to the way the 68000 increments its program counter.
Error types are defined below.

Bus Error: The processor tried to read rremory and there
was no response. Memory may not exist. A hardware
strapping option determines what rremory is equipped.
Additional information is displayed:

Function:<4 digit word> Access:<8 digit addr> Instr:<4 digit>

Function: Bits 0-2 ..are the state of the processor
function code outputs FeO,Fe1 and
FC2

Bit 3 .. is 0 for an instruction, 1 for not
an instruction.

Bit 4 •. is 0 for write, 1 for read.

Access
Instr

is the address of the attempt.
is the instruction being executed

ASSEMBLER AND SOT MANUAl, 101

APPENDIX A:
EXCEPT ION ERRORS

Address error: The processor attempted to access a word or
long word on an odd address. Addi tiorral information is
displayed with this error:

Function:<4 digit word> Access:<8 digit addr> Instr:<4 digit>

Function: Bits 0-2 ••are tht state of the processor
function code outputs FCO,FC1 and
FC2

Bi t 3 •• is 0 for an instruction, 1 for not
an instruction.

Bit 4 •. is 0 for write, 1 for react.

Access
Instr

is the address of the attempt.
is the instruction being executed

Illegal Instruction error: There are 2 unused opcodes
(Axxx & Fxxx) in the 68000 which are currently undefined and
will give this error if an attempt is rn:tde to use them.
Also, any undefined instruction format or addressing mode
will cause this error.

Ari thmetic error: An attempt was rmde to divide by zero
or a CHK instruction was executed (user needs to define
vector) or a TBAPV instruction was executed (user needs to
define vector).

Privilege error: User tried an instruction which requires
SUPERVISOR mode.

Reserved TRAP rR-rtain TRAP locations have been reserved by
Motorola for future use and should not be used.(This error
should never occur.)

Unassigned TRAP error: There are 16 trap locations in the
68000, 0-14 of which are normally unassigned by the
Debugger. Trap 15 is used for breakpoints by the Debugger.
Traps 8 to 14 are used hy the BIOS.

102 ASSEMBLER AND SOT MANUAL

APPENDIX A:
EXCEPT I ON ERRORS

Unassigned Interrupt error: There are 6 auto-interrupt
vectors. Normally all of them are unassigned hy the
debugger.

RAM Parity error: The 7th auto-interrupt vector is non
maskable and is used for RAM parity error reporting.
Rememher when troubleshooting that the Parity chip itself
could he the cause of this error. Note that the location
given is where the program was executing and is not
necessarily the location with the error.

Unknown error: Either the program entered the TRAP handler
illegally or the supervisor stack waR not set to point to
valid RAM.

ASSEMBLER AND SOT MANUAL 103

APPENDIX B:
FLOPPy DISK BOOT ERRORS

APPENDIX B: FLOPPy DISK BOOT ERRORS

Not BOOT di sk
Boot aborted on dr ; ve 0
Drive error (code) on drive (0 or 1)

01 - controller failure
02 - invalid corrmand
03 - recalibrate or seek failure
04 - timeout
05 - missing address mark
06 - no data found
07 - overrun
08 - CHC error
09 - end-of cylinder
OA - unknown
OB - address out-of-range

104 ASSFMBLER AND SOT MANUAl,

APPENDIX C:
WINCHESTER DRIVE r~ORS

APPENDIX C: WINCHESTER DRIVE ERRORS (while booting)

01 Could not initialize VCO.
03 Recalibrate/seek faUure.
04 Drive not ready.
08 CRC error.
OR Address out of range.
OC Wrong cylinder.
OE Bad device number.

ASSEMBLER AND sm MANUAL 105

APPENDIX D:
PROM ROUTINE ENTRY POINTS

APPENDIX 0: PROM ROUTINE ENTRY POINTS

KEYBCl-l ••••
KEYCHK
TERMCHAR ••
TERMTEXT ••
TERMCHLF ••
TERMHEXB ••
TERMHEXW ••
FDREAD •...
FDWRITE .••
BOOI'SX .••.
WSELECT ..•
RDCHAN9 ...
DEBUG •••••

Get a Keyboard Character loc=FE0008H
Check for a Keyboard Character 1oc=FEOOOCH
Printout a Character to Terminal .. loc=PE0014H
Printout a Text String•....• loc=FEO018H
Print a Carriage Return/Line Feed .• loc=FE001CH
Printout a Hexadecimal Byte•. loc=FE0020H
Printout a Hexadecimal Word .•...•. loc=FE0024H
Floppy Disk Read•••... loc=FE0028H
Floppy Disk write ...•..•••.•.....• loc=FE002CH
Floppy disk boot•........... loc=FE0038H
Winchester Select loc=FE0040H
Read Winchester channel 9 •........ loc=FE003CH
Debugger Entry Point•. loc=FE0030H

MACROS USED WITH PROM ROUTINE ENTRY POINTS:

LONG JSR MACRO:
.MACRO LJSR
.WORD 4EB9H
.WORD OOFEH
•WORD %1
.ENDM

LDNG JMP MACHO:
.MACRO LJMP
.WORD 4EF9H
.WORD OOFEH
.WORD %1
.ENDM

NOTE: These routines mlst be called in 68000 SUPERVISOR mode.

106 ASSEMBLER AND SOT MANUAL

APPENDIX E
DEBUGGEH COMMANDS

APPENDIX E: DEBUGGER COMMANDS

>AD. • • • • • . • . . • . • . • • • • . • • • . • . • • . • 64
Disassemble 20 instructions
from current display loco

>AD [$x+]addr................... 64
Disassemble 20 instructions
starting at addr

>AD [$x+]addrl,[$x+]addr2 ••••••• 64
Disassemble inst~lctions

from addrl through addr2

>AD [$x+] addr. #r1. • • • • • • • • • • • • • • • 64
Disassemble n instructions
starting at addr

>AR long1, long2. • • • • • • • • • • • • • • • • 52
Arithmetic computation

>DA[x].......................... 53
Display A registers or Ax

>DB[x]. ••••••••••••••••••••••••• 67
Display breakpoint regs.
or breakpoint register x

>DD[x]. • . . • • • • • • • • • • • • . . • • • • • • •• 53
Display D registers or Ox

)OM. • • • . . . • • • . . . • • . • • • 57
Display 256 bytes of memory
from current display loco

ASSEMBI,ER AND SOT MANUAI, 107

APPENDIX E
DEBUGGER OOMMANDS

>DM [$x+]addr. • • • • • . • • 57
Display 256 bytes of memory
starting at addr

>DM [$x+]addrl,[$x+]addr2 ..••... 57
Display memory from
addrl through addr2

>DM [$x+]addr, #n................ 57
Display n of memory
starting at addr

>DP. • • • . . • • • . • • . • • • • . • . • • • • . • • . • 54
Display program counter

>DR. . . • • . . . • • • • • . • • • • • • . • • • . • . . • 53
Display all registers

>DS... • . • . .•. • . • .. •• .. • . •• • . . .• • 54
Display status register

>OT[x] .••••.•••.•.•••.••••••••.• 72
Display current trace mode
for all traps or trap x

>DU. • • • • • • • . • . • • • . • 54
Display user stack pointer

>D$[x].......................... 50
Display base regs. or $x

>ER[x]. .•.•.. .••.... .•. 75
Exercise floppy read

>EW [x] • • . • • . . . • • • . • • • • • • • • • • • . • . 75
Exercise floppy write

>FB [$x+]addrl,[$x+]addr2, hyte. 59
Fill memory addrl through
addr2 wi th byte

108 ASSEMBLER AND SOT MANUAL

APPENDIX E
DEBUGGER COM!''IANDS

>FB [$x+]addr, #n, byte ••...•... 59
Fill memory with n bytes
of byte starting at addr

>F1. [$x+]addrl,[$x+]addr2, long. 60
Fill memory addrl through
addr2 with data long

>FL [$x+]addr, #n, long......... 60
Fi11 memory with n long
words of long starting
at addr

>FW [$x+]addrl,[$x+]addr2, word. 59
Fill rremory addrl through
addr2 with data word

>FW [$x+]addr, #n, word •••.•.••• 59
Fill memory with n words of
word starting at addr

>GC [[$x+]addr]. • .• • . • . ••. • 68
Execute program at PC or addr
if specified

>GO [[$x+]addr] • . . • • 138
Execute program, resetting
breakpoint counts

>GS [[$x+]addr].. •• •• . .. •• •.. ... 73
Execute suhroutine call at
PC or addr

>IF[x].......................... 47
Boot from floppy drive 0 or x
(O=left drive, l=right)

>IFR[x]......................... 48
Boot from floppy drive 0 or x
withollt loading RAMDISK

ASSEMBLER AND SOT MANUAl, 109

APPENDIX E
DEBUGGER COMMANDS

>I H[x] [#n ,name] • • . • 48
Boot from hard disk 0 or x

>IHR[x] [#n ,name]. .. .•. 49
Boot from hard disk without
loading HAMDISK

>IS. • • • • • • • • • • • . • • • • . • • 47
Initialize System

>LA.... 80
Load from a remote device
(Motorola format)

>LF[x] block,[$x+]addr,count .••• 74
Load count bytes into
addr from block # block
of floppy drive 0 or x

>LT. . . . • • • • • • • • • • • • 80
Load from the terminal
(Motorola format)

>M [$x+]addrl,[$x+)addr2,
[$x+]addr3. 60

Move data from addrl
through addr2 to addr3

>M [$x+]addrl,#n,[$x+]actdr2 ••••• 60
Move n bytes from addrl
to addr2

>POB [$x+]addr ,byte............. 76
Output data byte to port

>POW [$x+]addr,word 76
Output data word to port

>PIB [$x+]addr 76
Input data byte from port

110 ASSI<~vl.t3LER AND SDT MANUAL

APPENDIX E
DEBffiGER COMMANDS

>PIW [$x+]addr 77
Input data word from port

>PS x........................... 78
Set remote baud rate

>SA[x] [long]................... 56
Modify A registers or Ax

>SB[x] [[$x+]addr],[passcount] ••. 67
Set breakpoint regs or Bx

>SD[x] [long]................... 56
Modify 0 registers or Ox

>SM [$x+]addr. • • • . • • • • . • • . . . • . . . 58
Modify memory

>SP [long]...................... P>6
Modify Program counter

>SR. •. .•• • • . . •• • .•• • •• • •• ••• .• •• 56
~1odify all registers

>SS [long]...................... 56
Modify Status Register

>ST[x] [T,N]•........•..... 72
Set Traps for Tracing

>SU [long) 56
Modify User Stack pointer

>S$[x] rlong]................... 50
Modify base regs. or $x

>TB [[$x+]addr]................. 70
Trace without reg. print
starting at PC or addr

ASSEMBLER AND SOT MANUAL 111

APPENDIX E
DEBUGGER COMMANDS

>TE. • • . . . • • . . • • • . . • • • • • • • . . . • • . • 71
Terminate trace mode

>TN[x]. .. .• . . •• • .• . . • . . •• •••• • . • 71
Trace next x instructions

>TNI [x]. •.. .. .•...• .. .•••..• 71

>TR [[$x+]addr]... .. • . • •• • • ••••• 70

>WF[x] block,[$x+]addr,hytecount 74
Write count bytes from
addr to block # block
of floppy drive 0 or x

>XB[$x+]addr1,[$x+]addr2, 61
byte, [maskbyte J••••••

Search memory addrl through
addr2 for byte after
masking with maskbyte

>XW[$x+]addr1,[$x+)addr2,
word,[maskword)...... 61

Search memory addrl through
addr2 for word after
masking with maskword
masking with masklong

>XL[$x+]addrl,[$x+]addr2,
long,[masklong)...... 62

Search memory addrl through
addr2 for long after

>XM[$x+)paddr1,[$x+]paddr2,
[$x+)addrl,[$x+]addr2 •.•.

Search memory addrl through
addr2 for pattern in memory
paddrl through paddr2

112 ASS8MBLER AND SOT MANUAL

APPENDIX E
DEBUGGER Ca.1MANDS

T>. • •• • ••••• ••• . • •••• • •• •• ••• •. • 69
<CR> Trace next instruction
(active only when SOT is in
Trace Mode)

ASSBMBLER AND SOT MANUAL 113

.~.

INDEX

INDEX
-$-

$. · 51
-A-

AD. • • • • • • • • • • • • • • • •
Address errors. • • • • • • • •
Address of a Pascal Variable •.••••••••••

• 64
• .81, 101

. 93

· 12

AR •••••••••••
Arithmetic errors. • • • • • • • • • • • • • • • • • •
Assembler.

linkage .
AuxilIary serial channels ••

.... . 83 J

• 52
102
84
93

-B-

BAD rreroory I15g. • 21
basereg. 39
Boot

ffi(l.f. 17
swi tch settings. • • 21

'OCX)'l'ER. •roDE. • • • • 25, 27
:Bc>otstrap. .. 23

Header. • • . • • • • • • • • • • • • • . • • • • • . • . • . 24
'OCX)'l'SX. • • • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • • •
Break points, Debugger. •
Blls error. • . 81,
Bypassed Init. • • • • • • • • •

34
.37
101
.22

-c-
Compressor.

-D-
· 84

37
47
39
38
47

50
•• 53

. 67
• • 53

36

D$.
DA ••
DB.
DD.
DEBUG ••
Debugger

~lling. •
Examples •••••••
Quick description •••
Register Usage ••••••
SAGE Debugging Tool. •

114 ASSEMBLER AND sur MANUAL

INDEX

Dip Switch •••••••
DISABLIrli THE MEMORY TEST ••
r:»d:..
DP.
DR.
DS.
OT •
DU ••

-E-

.10

.22
• 57

54
.. 53

• 54
• 72

• •• 54

ER .. • 75

Unassigned Interrupt •••••
Unassigned T'RAP.. ..
unknOWll...

exception ..
illegal instruction ••••••••••••••••••••
privilege.. ..

-F-

• 81, 101
• • 83, 102

81, 101
81, 101
83, 102
83, 102

RAM Parity. • • • • • • • • • • • . • • • • • • • • • • • • • 83, 102
• • • • • . • • • • • • • • 83, 102

83, 102
83, 102

• 75
.81

81, 101
.. 84

bus ..

EW
EXCEPl'ION ERRORS •••
Exception errors. • •
EXTERNAL procedures ••

Errors
address.
arithmetic •

FB.. 59
FDREAD.. • 25, 33
FDWRITE.. 34
FL .. 60
Floppy disk

1:x:x:>t..
Control ••••••

17, 24
10

control I>Clrt.. 10
10Status port.

F1..Dppy FO~T.. 26
FW.. 59

ASSEldBLER AND SOT MANUAL 115

INDEX

-6-

GC ••••••••••••
GO ••••••••••••

• 68
68

GROUP-A switches. • • • • • . • 17
GS. • . 73

-1-

IEEE-488 ••
IF •••••
IFR. . • • • • • . . • • . . • • • .

10
47
48

49
• 26
102
.84

17
10

~

9
10

• 47
-K-

Illegal instruction errors •••••••••••••••••• 83,
Indirect addressing. .
Interrupt

drivers .
ENCODER •

I/O Ports
(general) •••••

I /0 Ports (specific) • • • • • • • • • • •
IS.

IFx 1:xx:>t COOI1l8.nd. • • • • • • • • . • • • • • • • . • • • • • • • . • • 24
IH. • • • • 48
IlIR.. • • • • • • • • • • • • • • . • • • • • • • • . • • • • • • • • • • •
I Hx 1:xx:>t cOOI'll8.nd. •

Keyboa.rd , read. • • .
KEYC}Il{. •

KEYBCH •• • . • . . • • • • • • • . • 30, 31
31
31

-L-

I.A •••
LF ••
Link

• 80
. 74

link .

register use ••••
68000 specifics ••

Linker.

asseIllbly. .. 93
• 92

• ••• 84
• .87

84
LT. . . • • • • 80

116 ASSEMBLER AND sm MANUAL

INDEX

-M-
M. • • • • • • • • • • • • • • • • •
MACR.OO. • • • • • • • • • • • • • • • • •
Memory test. • • • • • • •

disable •••••••
Motorola Object code. •

. 60
30

• 21
22

••••.•• • 79
-0-

Object code, Motorola. • •• 79
-p-

l?()¥I. •

• • • • • • • • • • • • • • • • ~6
-R-

address switching. •

Error Handling. • •
Initialization and Bootstrap Routines •••••••••••
I/OSubroutines. • • • • • • •
SAGE Startup Test. • • • • •
The SAGE Debugging Tool.

p-System, Floppy bootstrap. •
p-System, Winchester boot. •

I'()B. • • •

. 83, 102
76
77
76

l'c>11ed. drivers. 17
76
17

. • 10, 11
.98

83, 102
8

17
entry JX)ints. .. 30

15
15
15
15
15

• • 78
24

PR.<:N. • • • • • • • • • • •

Parity, errors. • • • • • • • •
PIB •••
PIW ••••

I>S •••••

.Power-up ••••••••
Printer Port •••••
PRIVATE areas •••
Privilege errors ••••

RAM •••••
mem:>ry test. •
parity error. •

. 8
21

83, 103
RAM SIZE =XXXX. • 21
ROCHAN9 •••••••••••••••••••••••••••••••••• 35
Real Time Clock. •
Registers ••••••
Registers, 68000. • • • • •

10
38

. 92

ASSEMBLER AND SDT MANUAL 117

INDEX

68000, registers ••
Relocatable code ••
Reserved TRAP. • • •

-8-

.92

.98
83, 102

S$. •
SA. . •

• • 50
• • 56

SAGE Debugging Tool •••••••••••••••••••••••••• 47
22
25
15
27
27
67
44
56
37
11

21
17
17

• 27

enviro~nt••.••••.••••••..••••..

• 58
• • 56

• 56
• 56
• 72

84
. 56

.30,92
SU •••••••

scrnds ••••••

SUPERVISOR roode.
Switches

1xx:>t device. .
GROUP-A. • • • • • • • • ••.•
power-up options. • •

SYSTai .BIOS ••••••••••

SB •••

SD ••••••••

sageproms. • • • • • •
SAGE.WOOOT •(x)[)E. •
SAGE. WOOOT •TEXT. •

SAGE IV STARTUP TEST. ••
SAGE.PBOOT.TEXT ••

·..
8m, calling. ..
Serial Port 1. 10,
Serial I'c>rt 2. 10
SM.
SP.
SR ••
SS ••
ST •••••••
Stand alone,

SYST,EM. I N'I'ERP. • 28
system lockup dump. • • • • •

-T-
22

T. • • • • • • • • • • • • • • • .•• 69
TB •••••
TE •••••
TERMCHAR.
TERMCRLF.
TERMHEXB •

• 70
71
31

• •• 25, 27, 32
. 32

118 ASSEMBLER AND sur MANUAL

INDEX

trace statl1S. • . • • • • • • . . • • • • • • • . . • • •

TRAPs

TNI. • • . . •
TR. • • • • • . • . . • • . • • • • . . • • • . • . . . • • . • . • . . • .

Tenninal, hoot.
TERMTEXT ••
TN •••••

•• 25, 27,
17
32
71
71
70
69

errors. .
to debugger. .

-u-

83, 102
37

Unassigned Interrupt error. • . • . • • . • . • • • • 83,
Unassigned TRAP error. • • • • • . • • • • . . • . • • • • • • 83,
UnknC1tVD error. 'I" 83 ,
USER lJl()(je. •

102
102
102

92

hoot. • • . • • • • . • • • • • . • • • • • • . • . • • • • • . •••

User stack •••••••••..•

Vectors, interrupt ..••••

'WDREAD ••••••••••••••
WF ••••••
Winchester

ports ••
WSELECl' ••••••••••••••

XB ••
XL.
XM ••
XW ••

ASSEMBLER AND sm MANUAL

-v-

-lJ-

-x-

. 84

17

27
74

26
13

. 35

•• 61
• 62

62
61

119

NOTES

NOTES

NOTES

NOTES

NOTES

	Cover
	Table of Contents
	I. Introduction
	II. Sage Memory Map
	III. Sage PROMS
	IV. Disk Bootstrap
	V. PROM Entry Points
	VI. Sage Debugging Tool
	VII. Link Information for the 68000
	VIII. 68000 Examples
	IX. Stand-Alone Loader
	Appendix A: Exception Errors
	Appendix B: Floppy Disk Boot Errors
	Appendix C: Winchester Drive Errors
	Appendix D: PROM Routine Entry Points
	Appendix E: Debugger Commands
	Index

